import matlab.engine
from pyepr.classes import Interface, Parameter
from pyepr.pulses import Pulse, RectPulse, ChirpPulse, HSPulse, Delay, Detection
from pyepr.sequences import Sequence, HahnEchoSequence, FieldSweepSequence
from pyepr.hardware.ETH_awg_load import uwb_load
import numpy as np
import os
import re
import time
from deerlab import correctphase
import numpy as np
import scipy.signal as sig
from scipy.io import loadmat
from scipy.io.matlab import MatReadError
from pyepr.utils import transpose_list_of_dicts
from pyepr.hardware.ETH_awg_load import uwb_eval_match
from pyepr.utils import save_file, transpose_list_of_dicts, transpose_dict_of_list
from pyepr import create_dataset_from_sequence
import datetime
from pyepr.hardware.Bruker_tools import build_unique_progtable
import copy
import threading
import warnings
import logging
import collections
[docs]
log = logging.getLogger("interface")
class ETH_awg_interface(Interface):
"""
Represents the interface for connecting to Andrin Doll style spectrometers.
"""
def __init__(self, awg_freq=1.5, dig_rate=2) -> None:
"""An interface for connecting to a Andrin Doll style spectrometer,
commonly in use at ETH Zürich.
System Requirements
-------------------
- Matlab 2022b or later
- Matlab engine for python
- Python (3.10+ recommended)
Parameters
-----------
awg_freq : float
The normal operating AWG frequency.
Sequence.LO = AWG.LO + AWG.awg_freq
dig_rate : float
The speed of the digitser in GSa/s
"""
super().__init__()
self.awg_freq = awg_freq
self.dig_rate = dig_rate
self.pulses = {}
self.cur_exp = None
self.bg_data = None
self.bg_thread = None
self.IFgain_options = np.array([1, 18.7, 36.14])
self.IFgain = 2
pass
@property
def savefolder(self):
return self._savefolder
@savefolder.setter
def savefolder(self, folder):
self._savefolder = folder
if hasattr(self, 'engine'):
self.engine.cd(folder)
def connect(self, session=None):
"""Connect to a running matlab session. If more than one session has
been started this will choose the first one. It is recomended that only
one session is open at one time, or that the engine is started with a
known name.
Parameters
----------
session : str, optional
The string denoting a specific session to connect to
, by default None
"""
if session is None:
matlab_sessions = matlab.engine.find_matlab()
if len(matlab_sessions) > 1:
print("More than one session, picking the first.")
session = matlab_sessions[0]
elif len(matlab_sessions) == 0:
raise RuntimeError(
"A matlab python session must be started. \n"+
"Please type into matlab session: "
"matlab.engine.shareEngine"
)
self.engine = matlab.engine.connect_matlab(session)
self.workspace = self.engine.workspace
self.engine.cd(self._savefolder)
def acquire_dataset(self,verbosity=0):
if self.bg_data is None:
data = self.acquire_dataset_from_matlab(verbosity=verbosity)
else:
data = self.bg_data
return super().acquire_dataset(data)
def acquire_dataset_from_matlab(self, verbosity=0,**kwargs):
""" Acquire and return the current or most recent dataset.
Returns
-------
dict
The dataset
"""
cur_exp = self.workspace['currexp']
folder_path = cur_exp['savepath']
# filename = cur_exp['savename']
# files = os.listdir(folder_path)
curexpname = self.workspace['currexpname']
# def extract_date_time(str):
# output = re.findall(r"(\d{8})_(\d{4})", str)
# if output != []:
# date = int(output[0][0])
# start_time = int(output[0][1])
# return date*10000 + start_time
# else:
# return 0
# newest = max([extract_date_time(file) for file in files])
# date = newest // 10000
# start_time = newest - date * 10000
# path = folder_path + "\\" \
# + f"{date:08d}_{start_time:04d}_{filename}.mat"
path = folder_path + "\\" + curexpname + ".mat"
for i in range(0, 50):
try:
e = 'None'
self.engine.dig_interface('savenow')
Matfile = loadmat(path, simplify_cells=True, squeeze_me=True)
# data = uwb_load(Matfile, options=options, verbosity=verbosity,sequence=self.cur_exp)
if 'cur_exp' in kwargs:
exp = kwargs['cur_exp']
else:
exp = self.cur_exp
if isinstance(exp, FieldSweepSequence):
data = uwb_eval_match(Matfile, exp,verbosity=verbosity,filter_type='cheby2',filter_width=0.01)
else:
data = uwb_eval_match(Matfile, exp,verbosity=verbosity)
if np.all(data.data == 0+0j) and not (hasattr(self,'stop_flag') and self.stop_flag.is_set()):
time.sleep(10)
print("Data is all zeros")
continue
except OSError as e:
time.sleep(10)
except IndexError as e:
time.sleep(10)
except ValueError as e:
time.sleep(10)
except MatReadError as e:
time.sleep(10)
else:
return data
raise RuntimeError("Data was unable to be retrieved")
def launch(self, sequence: Sequence , savename: str, IFgain=None, *args,**kwargs):
if IFgain is None:
test_IF = True
while test_IF:
self.terminate()
print(self.IFgain)
self.launch_withIFGain(sequence,savename,self.IFgain)
scan_time = sequence._estimate_time() / sequence.averages.value
check_1stScan = True
while check_1stScan:
dataset = self.acquire_dataset()
time.sleep(np.min([scan_time//10,2]))
dig_level = dataset.attrs['diglevel'] / (2**11 *sequence.shots.value* sequence.pcyc_dets.shape[0])
pos_levels = dig_level * self.IFgain_options / self.IFgain_options[self.IFgain]
pos_levels[pos_levels > 0.85] = 0
if dig_level == 0:
continue
if (pos_levels[self.IFgain] > 0.85) or (pos_levels[self.IFgain] < 0.03):
best_IFgain = np.argmax(pos_levels)
else:
best_IFgain = self.IFgain
if np.all(pos_levels==0):
log.critical('Saturation detected with IF gain 0. Please check the power levels.')
raise RuntimeError('Saturation detected with IF gain 0. Please check the power levels.')
elif (best_IFgain < self.IFgain) and (dataset.nAvgs == 0):
new_IFgain = np.max([self.IFgain - 1,best_IFgain])
log.warning(f"IF gain changed from {self.IFgain} to {new_IFgain}")
self.IFgain = new_IFgain
check_1stScan = False
elif (best_IFgain != self.IFgain) and (dataset.nAvgs >= 1):
new_IFgain = np.min([self.IFgain +1,best_IFgain])
log.warning(f"IF gain changed from {self.IFgain} to {new_IFgain}")
self.IFgain = new_IFgain
check_1stScan = False
elif dataset.nAvgs >=1:
log.debug(f"IF gain {self.IFgain} is optimal")
check_1stScan = False
test_IF = False
elif IFgain is not None:
self.launch_withIFGain(sequence,savename,IFgain)
def launch_withIFGain(self, sequence , savename: str, IFgain: int = 0):
"""Launch a sequence on the spectrometer.
Parameters
----------
sequence : Sequence
The pulse sequence to launched.
savename : str
The save name for the file.
IFgain : int
The IF gain, either [0,1,2], default 0.
"""
def detect_incompatible(seq):
# Check if two pulse parameters are shifted by diffent axes
duplicates = [item for item, count in collections.Counter(seq.progTable['EventID']).items() if count > 1]
for duplicate in duplicates:
indices = [i for i, x in enumerate(seq.progTable['EventID']) if x == duplicate]
print(indices)
axIDs = [seq.progTable['axID'][i] for i in indices]
axIDs.sort()
vars = [seq.progTable['Variable'][i] for i in indices]
vars.sort()
unique_vars = list(set(vars))
unique_vars.sort()
axIDs.sort()
unique_axIDs = list(set(axIDs))
unique_axIDs.sort()
if len(axIDs) == 1:
return False
elif vars == unique_vars:
return False
elif axIDs == unique_axIDs:
return True
else:
raise ValueError('Pulse time is not unique for the same eventID')
return False
self.bg_thread=None
self.bg_data = None
timestamp = datetime.datetime.now().strftime(r'%Y%m%d_%H%M_')
self.savename = timestamp + savename + '.h5'
if sequence.seqtable_steps > 2**18:
log.warning('Sequence too long. Breaking the problem down...')
self.launch_long(sequence,savename,IFgain)
elif detect_incompatible(sequence):
log.warning('Incompatible axes detected. Breaking the problem down...')
self.launch_long(sequence,savename,IFgain)
try:
self.launch_normal(sequence,savename,IFgain)
except matlab.engine.MatlabExecutionError:
log.warning('Sequence too long. Breaking the problem down...')
self.launch_long(sequence,savename,IFgain)
def launch_normal(self, sequence , savename: str, IFgain: int = 0,reset_cur_exp=True):
struct = self._build_exp_struct(sequence)
struct['savename'] = savename
struct['IFgain'] = IFgain
if reset_cur_exp:
self.cur_exp = sequence
self.workspace['exp'] = struct
self.engine.eval('launch(exp)', nargout=0)
def launch_long(self, sequence , savename: str, IFgain: int = 0, axID=-1):
"""Launch a sequence on the spectrometer that is too long for a single file.
This is to get around the issues with the sequence table by running a background loop
that takes control.
**current issues**:
- uses some bruker tools functions
- only works for a single averages
- creates many extra files
Parameters
----------
sequence : Sequence
The pulse sequence to launched.
savename : str
The save name for the file.
IFgain : int
The IF gain, either [0,1,2], default 0.
"""
dim = []
for p in sequence.evo_params:
if (p.uuid not in sequence.reduce_uuid):
for item in p.dim:
dim.append(item)
self.cur_exp = sequence
init_data = np.zeros(dim,dtype=np.complex128)
self.bg_data = create_dataset_from_sequence(init_data,self.cur_exp,extra_params={'nAvgs':0,'diglevel':0})
self.stop_flag = threading.Event()
self.bg_thread = threading.Thread(target=bg_thread,args=[self,sequence,savename,IFgain,axID,self.stop_flag])
self.bg_thread.start()
log.debug('Background thread starting')
def isrunning(self) -> bool:
if self.bg_thread is None:
state = bool(self.engine.dig_interface('savenow'))
return state
else:
state= self.bg_thread.is_alive()
return state
def tune_rectpulse(self,*,tp, LO, B, reptime, shots=400):
"""Generates a rectangular pi and pi/2 pulse of the given length at
the given field position. This value is stored in the pulse cache.
Parameters
----------
tp : float
Pulse length of pi/2 pulse in ns
LO : float
Central frequency of this pulse in GHz
B : float
Magnetic B0 field position in Gauss
reptime: float
Shot repetion time in us.
shots: int
The number of shots
Returns
-------
p90: RectPulse
A tuned rectangular pi/2 pulse of length tp
p180: RectPulse
A tuned rectangular pi pulse of length tp
"""
amp_tune =HahnEchoSequence(
B=B, LO=LO, reptime=reptime, averages=1, shots=shots
)
scale = Parameter("scale",0,dim=45,step=0.02)
amp_tune.pulses[0].tp.value = tp
amp_tune.pulses[0].scale = scale
amp_tune.pulses[1].tp.value = tp * 2
amp_tune.pulses[1].scale = scale
amp_tune.evolution([scale])
self.launch(amp_tune, "autoDEER_amptune", IFgain=0)
while self.isrunning():
time.sleep(10)
dataset = self.acquire_dataset()
dataset = dataset.epr.correctphase
data = np.abs(dataset.data)
scale = np.around(dataset.pulse0_scale[data.argmax()].data,2)
if scale > 0.9:
raise RuntimeError("Not enough power avaliable.")
if scale == 0:
warnings.warn("Pulse tuned with a scale of zero!")
p90 = amp_tune.pulses[0].copy(
scale=scale, LO=amp_tune.LO)
p180 = amp_tune.pulses[1].copy(
scale=scale, LO=amp_tune.LO)
return p90, p180
def tune_pulse(self, pulse, mode, LO, B , reptime, shots=400):
"""Tunes a single pulse a range of methods.
Parameters
----------
pulse : Pulse
The Pulse object in need of tuning.
mode : str
The method to be used.
LO : float
The local oscilator frequency in GHz
B : float
Magnetic B0 field position in Gauss
reptime : us
Shot repetion time in us.
shots: int
The number of shots
Returns
-------
Tunned Pulse: Pulse
The returned pulse object that is now tunned.
"""
# Check pulse is a pulse
if type(pulse) == Delay:
pass
if type(pulse) == Detection:
pass
# Get absolute central frequency
if hasattr(pulse,"freq"):
c_frq = pulse.freq.value + LO
elif hasattr(pulse, "init_freq") & hasattr(pulse, "BW"):
c_frq = pulse.init_freq.value + 0.5*pulse.BW.value + LO
elif hasattr(pulse, "final_freq") & hasattr(pulse, "BW"):
c_frq = pulse.final_freq.value - 0.5*pulse.BW.value + LO
elif hasattr(pulse, "init_freq") & hasattr(pulse, "final_freq"):
c_frq = 0.5*(pulse.final_freq.value + pulse.final_freq.value) + LO
# Find rect pulses
if mode == "amp_hahn":
if pulse.flipangle.value == np.pi:
tp = pulse.tp.value / 2
elif pulse.flipangle.value == np.pi/2:
tp = pulse.tp.value
pi2_pulse, pi_pulse = self.tune_rectpulse(tp=tp, B=B, LO=c_frq, reptime=reptime)
amp_tune =HahnEchoSequence(
B=B, LO=LO,
reptime=reptime, averages=1, shots=shots,
pi2_pulse = pulse, pi_pulse=pi_pulse
)
scale = Parameter('scale',0,unit=None,step=0.02, dim=45, description='The amplitude of the pulse 0-1')
amp_tune.pulses[0].scale = scale
amp_tune.evolution([scale])
self.launch(amp_tune, "autoDEER_amptune", IFgain=0)
while self.isrunning():
time.sleep(10)
dataset = self.acquire_dataset()
dataset = dataset.epr.correctphase
data = np.abs(dataset.data)
new_amp = np.around(dataset.pulse0_scale[dataset.data.argmax()].data,2)
if new_amp > 0.9:
raise RuntimeError("Not enough power avaliable.")
if new_amp == 0:
warnings.warn("Pulse tuned with a scale of zero!")
pulse.scale = Parameter('scale',new_amp,unit=None,description='The amplitude of the pulse 0-1')
return pulse
elif mode == "amp_nut":
pi2_pulse, pi_pulse = self.tune_rectpulse(tp=12, B=B, LO=c_frq, reptime=reptime)
nut_tune = Sequence(
name="nut_tune", B=(B/LO*c_frq), LO=LO, reptime=reptime,
averages=1,shots=shots
)
nut_tune.addPulse(pulse.copy(
t=0, pcyc={"phases":[0],"dets":[1]}, scale=0))
nut_tune.addPulse(
pi2_pulse.copy(t=2e3,
pcyc={"phases":[0, np.pi],"dets":[1, -1]},
freq=c_frq-LO))
nut_tune.addPulse(
pi_pulse.copy(t=2.5e3, pcyc={"phases":[0],"dets":[1]},
freq=c_frq-LO))
nut_tune.addPulse(Detection(t=3e3, tp=512, freq=c_frq-LO))
scale = Parameter('scale',0,unit=None,step=0.02, dim=45, description='The amplitude of the pulse 0-1')
nut_tune.pulses[0].scale = scale
nut_tune.evolution([scale])
# nut_tune.addPulsesProg(
# pulses=[0],
# variables=["scale"],
# axis_id = 0,
# axis= np.arange(0,0.9,0.02)
# )
self.launch(nut_tune, "autoDEER_amptune", IFgain=0)
while self.isrunning():
time.sleep(10)
dataset = self.acquire_dataset()
dataset = dataset.epr.correctphase
data = dataset.data
axis = dataset.pulse0_scale
# data = correctphase(dataset.data)
if data[0] < 0:
data *= -1
if np.isclose(pulse.flipangle.value, np.pi):
new_amp = np.around(axis[data.argmin()].data,2)
elif np.isclose(pulse.flipangle.value, np.pi/2):
sign_changes = np.diff(np.sign(np.real(data)))
new_amp = np.around(axis[np.nonzero(sign_changes)[0][0]].data,2)
else:
raise RuntimeError("Target pulse can only have a flip angle of either: ",
"pi or pi/2.")
pulse.scale = Parameter('scale',new_amp,unit=None,description='The amplitude of the pulse 0-1')
return pulse
def tune(self,*, sequence=None, mode="amp_hahn", LO=None, gyro=None):
if mode == "rect_tune":
if LO is None:
raise ValueError("LO must be given for rect_tune")
if gyro is None:
raise ValueError("gyro must be give")
elif gyro >1:
raise ValueError("Gyromagnetic ratio must be give in GHz/G")
amp_tune =HahnEchoSequence(
B=LO/gyro, LO=LO, reptime=2e3, averages=1, shots=400
)
tp = 12
amp_tune.pulses[0].tp.value = tp
amp_tune.pulses[0].scale.value = 0
amp_tune.pulses[1].tp.value = tp*2
amp_tune.pulses[1].scale.value = 0
amp_tune.addPulsesProg(
pulses=[0,1],
variables=['scale','scale'],
axis_id=0,
axis=np.arange(0,0.9,0.02),
)
self.launch(amp_tune, "autoDEER_amptune", IFgain=0)
while self.isrunning():
time.sleep(10)
dataset = self.acquire_dataset()
scale = np.around(dataset.pulse0_scale[dataset.data.argmax()].data,2)
if scale > 0.9:
raise RuntimeError("Not enough power avaliable.")
self.pulses[f"p90_{tp}"] = amp_tune.pulses[0].copy(
scale=scale, LO=amp_tune.LO)
self.pulses[f"p180_{tp*2}"] = amp_tune.pulses[1].copy(
scale=scale, LO=amp_tune.LO)
elif mode == "amp_hahn":
for pulse in sequence.pulses:
if type(pulse) == Delay:
continue
if type(pulse) == Detection:
continue
all_pulses = list(self.pulses.keys())
pulse_matches = []
for pulse_name in all_pulses:
if not re.match(r"^p180_",pulse_name):
continue
if not np.abs((self.pulses[pulse_name].LO.value + self.pulses[pulse_name].freq.value) - (sequence.LO.value + pulse.freq.value)) < 0.01:
continue
pulse_matches.append(pulse_name)
ps_length_best =1e6
for pulse_name in pulse_matches:
ps_length = int(re.search(r"p180_(\d+)",pulse_name).groups()[0])
if ps_length < ps_length_best:
ps_length_best = ps_length
pi_pulse = self.pulses[f"p180_{ps_length_best}"]
amp_tune =HahnEchoSequence(
B=sequence.B.value, LO=sequence.LO.value,
reptime=sequence.reptime.value, averages=1, shots=400,
pi2_pulse = pulse, pi_pulse=pi_pulse
)
amp_tune.pulses[0].scale.value = 0
amp_tune.addPulsesProg(
pulses=[0],
variables=['scale'],
axis_id=0,
axis=np.arange(0,0.9,0.02),
)
self.launch(amp_tune, "autoDEER_amptune", IFgain=0)
while self.isrunning():
time.sleep(10)
dataset = self.acquire_dataset()
scale = np.around(dataset.pulse0_scale[dataset.data.argmax()].data,2)
pulse.scale.value = scale
return sequence
def _build_exp_struct(self, sequence) -> dict:
struc = {}
struc["avgs"] = float(sequence.averages.value)
struc["reptime"] = round(float(sequence.reptime.value * 1e3), 0)
struc["shots"] = float(sequence.shots.value)
struc['B'] = round(float(sequence.B.value), 0)
struc['name'] = sequence.name
# Build pulse/detection events
struc["events"] = list(map(self._build_pulse, sequence.pulses))
unique_parvars = np.unique(sequence.progTable["axID"])
# Build parvars
struc["parvars"] = []
if hasattr(sequence, 'pcyc_vars'):
pcyc_parvar = self._build_phase_cycle(sequence)
if pcyc_parvar["vec"].shape[0] != 1:
struc["parvars"].append(pcyc_parvar)
for i in unique_parvars:
struc["parvars"].append(self._build_parvar(i, sequence))
struc["LO"] = round(float(sequence.LO.value - self.awg_freq), 3)
return struc
def _build_pulse(self, pulse) -> dict:
event = {}
event["t"] = float(pulse.t.value)
if type(pulse) is Detection:
# event["det_len"] = float(pulse.tp.value * self.dig_rate)
event["det_len"] = float(1024)
event["det_frq"] = float(pulse.freq.value) + self.awg_freq
event["name"] = "det"
return event
# Assuming we now have an actual pulse not detection event
event["pulsedef"] = {}
event["pulsedef"]["scale"] = float(pulse.scale.value)
event["pulsedef"]["tp"] = float(pulse.tp.value)
if type(pulse) is RectPulse:
event["pulsedef"]["type"] = 'chirp'
event["pulsedef"]["nu_init"] = pulse.freq.value + self.awg_freq
elif type(pulse) is ChirpPulse:
event["pulsedef"]["type"] = 'chirp'
if hasattr(pulse, "init_freq"):
event["pulsedef"]["nu_init"] = pulse.init_freq.value +\
self.awg_freq
else:
nu_init = pulse.final_freq.value - pulse.BW.value
event["pulsedef"]["nu_init"] = nu_init + self.awg_freq
if hasattr(pulse, "final_freq"):
event["pulsedef"]["nu_final"] = pulse.final_freq.value +\
self.awg_freq
else:
nu_final = pulse.init_freq.value + pulse.BW.value
event["pulsedef"]["nu_final"] = nu_final + self.awg_freq
elif type(pulse) is HSPulse:
event["pulsedef"]["type"] = 'HS'
if hasattr(pulse, "init_freq"):
event["pulsedef"]["nu_init"] = pulse.init_freq.value +\
self.awg_freq
else:
nu_init = pulse.final_freq.value - pulse.BW.value
event["pulsedef"]["nu_init"] = nu_init + self.awg_freq
if hasattr(pulse, "final_freq"):
event["pulsedef"]["nu_final"] = pulse.final_freq.value +\
self.awg_freq
else:
nu_final = pulse.init_freq.value + pulse.BW.value
event["pulsedef"]["nu_final"] = nu_final + self.awg_freq
event["pulsedef"]["HSorder"] = float(pulse.order1.value)
event["pulsedef"]["HSorder2"] = float(pulse.order2.value)
event["pulsedef"]["HSbeta"] = float(pulse.beta.value)
elif type(pulse) is Pulse:
event["pulsedef"]["type"] = 'FMAM'
raise RuntimeError("Not yet implemented")
if self.resonator is not None:
resonator = {}
resonator['LO'] = self.resonator.dataset.pulse1_LO #- 1.5 # Change to LO after shifting resonator profile definition
resonator['nu1'] = self.resonator.profile
resonator['range'] = self.resonator.freqs.values - resonator['LO'] + self.awg_freq
resonator['scale'] = self.resonator.dataset.pulse0_scale
event["pulsedef"]["resonator"] = resonator
return event
def _build_phase_cycle(self, sequence) -> dict:
parvar = {}
parvar["reduce"] = 1
parvar["ax_id"] = 1
parvar["name"] = "phase_cycle"
pulse_str = lambda x: f"events{{{x+1}}}.pulsedef.phase"
parvar["variables"] = list(map(pulse_str, sequence.pcyc_vars))
# Find detection pulse
for i, pulse in enumerate(sequence.pulses):
if type(pulse) == Detection:
det_id = i
det_str = "events{{{}}}.det_sign".format(det_id+1)
parvar["variables"].append(det_str)
parvar["vec"] = np.vstack(
[sequence.pcyc_cycles.T, sequence.pcyc_dets]).T
return parvar
def _build_parvar(self, id, sequence) -> dict:
"""This interface takes a dictionary called a parvar for all
progressive elements. It is this object that controls how the
sequence changes with time.
.. note::
This interface interprets any change in `LO` as being a
change in the IF frequency of all pulses and detections.
I.e. the physcial LO **does not** change.
Parameters
----------
id : _type_
_description_
sequence : _type_
_description_
Returns
-------
dict
_description_
"""
def get_vec(seq,EventID,variable,uuid):
if EventID is None:
attr = getattr(seq, variable)
else:
attr = getattr(seq.pulses[EventID], variable)
# Find local position
axis_T = transpose_list_of_dicts(attr.axis)
i = axis_T['uuid'].index(uuid)
vec = attr.value + attr.axis[i]['axis']
if attr.unit == 'us':
vec *=1e3
elif attr.unit == 'ms':
vec *=1e6
return vec.astype(float)
prog_table = sequence.progTable
prog_table_n = len(prog_table["axID"])
parvar = {}
parvar["name"] = f"parvar{id+1}"
parvar["variables"] = []
parvar["vec"] = []
for i in range(0, prog_table_n):
if prog_table["axID"][i] == id:
pulse_num = prog_table["EventID"][i]
var = prog_table["Variable"][i]
uuid = prog_table["uuid"][i]
# vec = prog_table["axis"][i].astype(float)
vec = get_vec(sequence,pulse_num,var,uuid)
if pulse_num is not None:
if var in ["freq", "init_freq"]:
vec += self.awg_freq
if isinstance(sequence.pulses[pulse_num],Detection):
var = 'det_frq'
else:
var = "nu_init"
elif var == "final_freq":
vec += self.awg_freq
var = "nu_final"
if var == "t":
pulse_str = f"events{{{pulse_num+1}}}.t"
elif var =='det_frq':
pulse_str = f"events{{{pulse_num+1}}}.det_frq"
else:
pulse_str = f"events{{{pulse_num+1}}}.pulsedef.{var}"
parvar["variables"].append(pulse_str)
parvar["vec"].append(vec)
elif var == "LO":
# Instead of stepping the LO we will step the frequency
# all the pulses and detection events.
pulse_strings = []
# vec = prog_table["axis"][i].astype(float)
centre_freq = (vec[-1] + vec[0])/2
LO = centre_freq - self.awg_freq
sequence.LO.value = centre_freq
vec = vec - LO
vecs = []
pulse_str = lambda i: f"events{{{i+1}}}.pulsedef.nu_init"
det_str = lambda i: f"events{{{i+1}}}.det_frq"
for i,pulses in enumerate(sequence.pulses):
if type(pulses) is Delay:
continue
elif type(pulses) is Detection:
pulse_strings.append(det_str(i))
vecs.append(vec)
else:
pulse_strings.append(pulse_str(i))
vecs.append(vec)
parvar["variables"].extend(pulse_strings)
parvar["vec"].extend(vecs)
else:
pulse_str = var
parvar["variables"].append(pulse_str)
parvar["vec"].append(vec)
parvar["vec"] = np.stack(parvar["vec"]).T
return parvar
def terminate(self):
""" Stops the current experiment
"""
if self.bg_thread is None:
self.engine.dig_interface('terminate', nargout=0)
else:
self.engine.dig_interface('terminate', nargout=0)
self.stop_flag.set()
self.bg_thread.join()
self.bg_thread = None
pass
[docs]
def bg_thread(interface,seq,savename,IFgain,axID,stop_flag):
# Add averaging loop here
dim = []
for p in seq.evo_params:
if (p.uuid not in seq.reduce_uuid):
for item in p.dim:
dim.append(item)
OG_seq_progTable = seq.progTable
new_seq = seq.copy()
new_seq.averages.value=1
new_params = copy.copy(seq.evo_params)
droped_param = new_params.pop(axID)
fixed_param = seq.evo_params[axID]
# is removed axis a reduced axis
if fixed_param.uuid in seq.reduce_uuid:
reduced = True
else:
reduced = False
new_reduce_param = []
for p in new_params:
if p.uuid == fixed_param.uuid:
continue
elif p.uuid in seq.reduce_uuid:
new_reduce_param.append(p)
def set_params_by_uuid(new_seq, progTable,uuid,index):
n_elements = len(progTable['EventID'])
for i in range(n_elements):
ele_uuid = progTable['uuid'][i]
if ele_uuid != uuid:
continue
var = progTable['Variable'][i]
axis = progTable['axis'][i]
if progTable['EventID'][i] is None:
# A sequence parameter
param = getattr(new_seq, var)
new_value = param.value + axis[index]
else:
param = getattr(new_seq.pulses[progTable['EventID'][i]], var)
new_value = param.value + axis[index]
param.value = new_value
nAvg=seq.averages.value
dig_level=0
for iavg in range(nAvg):
if stop_flag.is_set():
break
single_scan_data = np.zeros(dim, dtype=np.complex128)
for i in range(fixed_param.dim[0]):
if stop_flag.is_set():
break
# droped_param.value = fixed_param.get_axis()[i]
tmp_seq = new_seq.copy()
set_params_by_uuid(tmp_seq, OG_seq_progTable, droped_param.uuid, i)
tmp_seq.evolution(new_params,new_reduce_param)
interface.launch_normal(tmp_seq, savename=f"{savename}_avg{iavg+1}of{nAvg}_{i+1}of{fixed_param.dim[0]}", IFgain=IFgain, reset_cur_exp=False)
while bool(interface.engine.dig_interface('savenow')):
if stop_flag.is_set():
break
time.sleep(10)
single_scan = interface.acquire_dataset_from_matlab(cur_exp=tmp_seq)
if reduced:
single_scan_data = single_scan.data
else:
single_scan_data[:,i] = single_scan.data
if stop_flag.is_set():
break
interface.bg_data.data += single_scan_data
if single_scan.attrs['diglevel'] > dig_level:
dig_level = single_scan.attrs['diglevel']
interface.bg_data.attrs['diglevel'] = dig_level
interface.bg_data.attrs['nAvgs'] = iavg+1
print("Background thread finished")