pyepr.ResonatorProfileAnalysis ============================== .. py:class:: pyepr.ResonatorProfileAnalysis(dataset, f_lims=(32, 36)) Analysis and calculation of resonator profiles. :Parameters: **dataset** : xr.xarray The dataset containing the nutations. It must have both a 'LO' axis and a 'pulse0_tp' axis. **f_lims** : tuple, optional The frequency limits of the resonator profile, by default (33,35) .. !! processed by numpydoc !! .. py:attribute:: dataset .. py:attribute:: n_files .. py:attribute:: t .. py:attribute:: f_lims .. py:method:: process_nutations(noisedensity = None, threshold = 2, nfft = 1000) Uses a power series to extract the resonator profile. :Parameters: **noisedensity** : tuple, optional If not given the first trace is assumed to be so far off resonance that it is just noise. **nfft: int, optional** The length of the fft to be used, zero padded if requred, default is 1000. **threshold: int, optional** The multiples above the noise a single must be to not be excluded, default is 2. :Returns: prof_data: np.ndarray The resonator profile, give in nutation frequency (GHz) prof_frqs: np.ndarray The frequency axis in GHz .. !! processed by numpydoc !! .. py:method:: _process_fit(R_limit=0.5) .. py:method:: fit(f_diff_threshold=2, cores=1, multi_mode=False, fc_guess=None) Fit the resonator profile with a sum of lorentzians. :Parameters: **f_diff_threshold** : float, optional The difference between two peaks at which they will be merged into one, by default 0.03 .. !! processed by numpydoc !! .. py:method:: plot(fieldsweep=None, axs=None, fig=None) plot. :Parameters: **fieldsweep** : FieldSweepAnalysis, optional Overlays the FieldSweep if provided, by default None **axs** : matplotlib.Axes, optional Axes to plot on, by default None **fig** : matplotlib.Figure, optional Figure to plot on, by default None :Returns: Matplotlib.Figure matplotlib figure object .. !! processed by numpydoc !!