pyepr.HahnEchoRelaxationAnalysis

class pyepr.HahnEchoRelaxationAnalysis(dataset)

Analysis, fitting and plotting for the HahnEchoRelaxation Sequence.

Parameters:
datasetxarray.DataArray

The dataset to be analysed, with the time axis contained.

Attributes:
axisxr.DataArray

The time axis representing the interpulse delay.

data
dataset
noise
fit(type='mono', **kwargs)

Fit the experimental CP decay

Parameters:
typestr, optional

Either a mono or double exponential decay model, by default “mono”

Parameters:

type (str)

plot(norm=True, ci=50, axs=None, fig=None)

Plot the carr purcell decay with fit, if avaliable.

Parameters:
normbool, optional

Normalise the fit to a maximum of 1, by default True

ciint, optional

The percentage confidence interval to plot, by default 50

Returns:
Figure

The figure.

Parameters:

norm (bool)

Return type:

matplotlib.figure.Figure

check_decay(level=0.1)

Checks that the data has decayed by over 90% in the first half, and less than 90% in the first quarter.

Parameters:
levelfloat, optional

The level to check the decay, by default 0.05

Returns:
int

0 if both conditions are met, 1 if a longer decay is needed, and -1 if the decay is too long.

__call__(x, norm=True, SNR=False, source=None)

Evaluate the fit or data at a given x value.

Parameters:
xfloat

The x value to evaluate the data at.

normbool, optional

Normalise the data to the maximum, by default True

SNRbool, optional

Return the SNR_per_sqrt(shot) for this data point, by default False

sourcestr, optional

The source of the data, either ‘fit’ or ‘data’, by default None If None, the source is determined by the presence of a fit result.