Source code for autodeer.FieldSweep

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
from autodeer.utils import sop
from autodeer.classes import Parameter
from scipy import signal
from scipy.linalg import eig
from scipy.sparse import bsr_array
import deerlab as dl
from xarray import DataArray
from autodeer.colors import primary_colors, ReIm_colors
from scipy.interpolate import UnivariateSpline


[docs] def create_Nmodel(mwFreq): """Create the field sweep model for a Nitroxide spin system. Parameters ---------- mwFreq : float The microwave frequency in MHz """ def model_func(B, Boffset, gy,gz,axy,az,GB): B = B.astype(np.float64) gx =-0.0025 * az + 2.0175 system = SpinSystem([1/2],[1],[gx, gy, gz], [axy*28.0328,axy*28.0328,az*28.0328]) system.gn = np.array([0.4038]) _,y =build_spectrum(system, mwFreq, B,Guass_broadening=GB); y_new = np.interp(B,B+Boffset,y) return y_new mymodel = dl.Model(model_func,constants='B') # mymodel.mwFreq # mymodel.gx.par0 = 2.007 # mymodel.gx.lb = mymodel.gx.par0 - 5e-3 # mymodel.gx.ub = mymodel.gx.par0 + 5e-3 mymodel.Boffset.par0 = 0.7 mymodel.Boffset.lb=-2 mymodel.Boffset.ub=2 mymodel.Boffset.unit = 'mT' mymodel.gy.par0 = 2.006 mymodel.gy.lb = mymodel.gy.par0 - 5e-3 mymodel.gy.ub = mymodel.gy.par0 + 5e-3 mymodel.gy.freeze(2.0061) mymodel.gz.par0 = 2.003 mymodel.gz.lb = mymodel.gz.par0 - 5e-3 mymodel.gz.ub = mymodel.gz.par0 + 5e-3 mymodel.gz.freeze(2.0021) # mymodel.axy.par0 = 15 # mymodel.axy.lb = mymodel.ax.par0 - 10 # mymodel.axy.ub = mymodel.ax.par0 + 10 # mymodel.axy.freeze(13.7) mymodel.axy.par0 = 0.488 mymodel.axy.lb = mymodel.axy.par0 - 0.2 mymodel.axy.ub = mymodel.axy.par0 + 0.2 mymodel.axy.freeze(0.488) mymodel.axy.unit = 'mT' # mymodel.az.par0 = 100 # mymodel.az.lb = mymodel.az.par0 - 10 # mymodel.az.ub = mymodel.az.par0 + 10 mymodel.az.par0 = 3.66 mymodel.az.lb = mymodel.az.par0 - 0.5 mymodel.az.ub = mymodel.az.par0 + 0.5 mymodel.az.unit = 'mT' mymodel.GB.par0=0.45 mymodel.GB.lb = 0.15 mymodel.GB.ub = 0.65 mymodel.addlinear('scale',lb=0) return mymodel
[docs] class FieldSweepAnalysis(): def __init__(self, dataset:DataArray) -> None: """Analysis and calculation of FieldSweep Experiment. Parameters ---------- dataset : xarray.Dataarray _description_ """ # self.axis = dataset.axes[0] # self.data = dataset.data # self.dataset = dataset # if hasattr(self.dataset,"LO"): # self.LO = self.dataset.LO if 'B' in dataset.coords: self.axis = dataset['B'] else: self.axis = dataset['X']
[docs] self.data = dataset
self.data = self.data.epr.correctphasefull if 'LO' in dataset.attrs: self.LO = dataset.attrs['LO'] pass
[docs] def find_max(self) -> float: """Calculates the maximum field Returns ------- float Max field """ if 'B' in self.data.coords: self.max_field = self.data['B'].data[np.abs(self.data).argmax()] else: self.max_field = self.data['X'].data[np.abs(self.data).argmax()] return self.max_field
[docs] def calc_gyro(self, LO: float=None) -> float: """Calculates the gyromagnetic ratio for a given frequency Parameters ---------- det_frq : float The detection frequency for the field sweep. Returns ------- float The gyromagnetic ratio in G/GHz. """ if not hasattr(self, "max_field"): self.find_max() if LO is None: if hasattr(self,"LO"): # LO = self.LO.value LO = self.LO else: raise ValueError("A LO frequency must eithe be in the dataset or specified as an argument") self.LO = LO self.gyro = LO/self.max_field hf_x = LO - self.gyro*self.axis self.fs_x = LO + hf_x self.fs_x = LO - self.gyro*self.axis return self.gyro
[docs] def calc_noise_level(self,SNR_target=30): SNR = self.data.epr.correctphase.epr.SNR SNRp1k = SNR / (self.data.nPcyc * self.data.nAvgs * self.data.shots *1e-3)**0.5 level = np.round((SNR_target/SNRp1k)**2 / (self.data.nPcyc * 2 * 50* 1e-3)) if level < 0.2: level = 0.2 return level
[docs] def smooth(self,*args,**kwargs): """ Generates a smoothed version of the data using a 1D smoothing spline. Returns ------- np.ndarray The smoothed data. """ smooth_spl = UnivariateSpline(self.axis, self.data,ext=1) smooth_spl.set_smoothing_factor(0.01) smooth_spl_freq = UnivariateSpline(np.flip(self.fs_x), np.flip(self.data),ext=1) smooth_spl_freq.set_smoothing_factor(0.01) self.smooth_data = smooth_spl(self.axis) self.func = smooth_spl self.func_freq = smooth_spl_freq return self.smooth_data
[docs] def fit(self, spintype='N', **kwargs): if spintype != 'N': raise ValueError("Currently the fit function only supports Nitroxide spins") if isinstance(self.LO,Parameter): mymodel = create_Nmodel(self.LO.value*1e3) else: mymodel = create_Nmodel(self.LO*1e3) B = np.linspace(self.axis.min(), self.axis.max(), self.data.shape[0])*0.1 if np.iscomplexobj(self.data): Vexp = dl.correctphase(self.data.to_numpy()) else: Vexp = self.data.to_numpy() result = dl.fit(mymodel,Vexp,B,verbose=2,reg=False, **kwargs) self.results = result self.model = mymodel self.func = lambda x: result.evaluate(mymodel,x*0.1) self.func_freq = lambda x: result.evaluate(mymodel,(-x+self.LO) /self.gyro*1e-1) return result
[docs] def plot(self, norm: bool = True, axis: str = "field", axs=None, fig=None) -> Figure: """Generate a field sweep plot Parameters ---------- norm : bool, optional Nomarlisation of the plot to a maximum of 1, by default True axis : str, optional plot field sweep on either the "field" axis or "freq" axis Returns ------- Matplotlib.Figure matplotlib figure """ if norm is True: data = self.data data /= np.max(np.abs(data)) else: data = self.data if axs is None and fig is None: fig, axs = plt.subplots(1, 1, figsize=(8, 6)) # Plot the data if axis.lower() == 'field': if np.iscomplexobj(data): axs.plot(self.axis, np.real(data), label='Re',color=primary_colors[1]) axs.plot(self.axis, np.imag(data), label='Im',color=primary_colors[2]) else: axs.plot(self.axis, data, label='Re',color=primary_colors[1]) axs.legend() axs.set_xlabel('Field G') axs.set_ylabel('Normalised Amplitude') elif axis.lower() == 'freq': if not hasattr(self, "fs_x"): raise RuntimeError("Please run fieldsweep.calc_gyro() first") if np.iscomplexobj(data): axs.plot(self.fs_x, np.real(data), label='Re',color=primary_colors[1]) axs.plot(self.fs_x, np.imag(data), label='Im',color=primary_colors[2]) else: axs.plot(self.axis, data, label='Re',color=primary_colors[1]) axs.set_xlabel('Frequency GHz') axs.set_ylabel('Normalised Amplitude') # Plot the fit if hasattr(self,"results"): data = self.results.evaluate(self.model,self.axis*0.1) if norm is True: data /= self.results.scale if axis.lower() == 'field': axs.plot(self.axis, data, label='fit',c=primary_colors[0]) elif axis.lower() == 'freq': axs.plot(self.fs_x, np.flip(data), label='fit',c=primary_colors[0]) axs.legend() elif hasattr(self,"smooth_data"): if axis.lower() == 'field': data = self.smooth_data / np.max(np.abs(self.smooth_data)) axs.plot(self.axis, data, label='smooth',c=primary_colors[0]) elif axis.lower() == 'freq': data = self.func_freq(self.fs_x) data /= np.max(np.abs(data)) axs.plot(self.fs_x, data, label='smooth',c=primary_colors[0]) axs.legend() return fig
[docs] class SpinSystem: def __init__(self,espins, nspin, g,A) -> None:
[docs] self.g = np.array(g)
[docs] self.A = np.array(A)
[docs] self.I = np.array(nspin)
[docs] self.S = np.array(espins)
[docs] self.nElectrons = len(espins)
[docs] self.nNuclei = len(nspin)
[docs] self.Spins = np.concatenate([espins, nspin])
[docs] self.nStates = np.prod(2*self.Spins +1)
# Defaults
[docs] self.gnscale = 1
[docs] def erot(*args): """Passive rotation matrix. """ if len(args) == 0: raise ValueError("No input arguments given!") option = "" if len(args) == 1 or len(args) == 2: angles = np.asarray(args[0]) if angles.size != 3: raise ValueError("Three angles (either separately or in a 3-element array) expected.") gamma = angles[2] beta = angles[1] alpha = angles[0] if len(args) == 2: option = args[1] elif len(args) == 3 or len(args) == 4: alpha = args[0] beta = args[1] gamma = args[2] if len(args) == 4: option = args[3] else: raise ValueError("Wrong number of input arguments!") if not isinstance(option, str): raise ValueError("Last argument must be a string, either 'rows' or 'cols'.") if option == "": return_rows = False return_cols = False elif option == "rows": return_rows = True return_cols = False elif option == "cols": return_rows = False return_cols = True else: raise ValueError("Last argument must be a string, either 'rows' or 'cols'.") # Check angles if np.isnan(alpha) or np.isnan(beta) or np.isnan(gamma): raise ValueError("At least one of the angles is NaN. Angles must be numbers.") # Precalculate trigonometric functions of angles sa = np.sin(alpha) ca = np.cos(alpha) sb = np.sin(beta) cb = np.cos(beta) sg = np.sin(gamma) cg = np.cos(gamma) # Compute passive rotation matrix R = np.array([[cg*cb*ca - sg*sa, cg*cb*sa + sg*ca, -cg*sb], [-sg*cb*ca - cg*sa, -sg*cb*sa + cg*ca, sg*sb], [sb*ca, sb*sa, cb]]) if return_rows: return R[0, :], R[1, :], R[2, :] elif return_cols: return R[:, 0], R[:, 1], R[:, 2] else: return R
[docs] def eyekron(M:np.ndarray): """ Calculates the Kronecker product of the identity matrix with a matrix M. Parameters: M (np.ndarray): The matrix to be multiplied with the identity matrix. Returns: np.ndarray: The Kronecker product of the identity matrix with M. """ size = np.shape(M)[0] return np.kron(np.identity(size),M)
[docs] def kroneye(M): """ Computes the Kronecker product of a matrix with the identity matrix of the same size. Args: M (numpy.ndarray): The matrix to compute the Kronecker product with. Returns: numpy.ndarray: The Kronecker product of M with the identity matrix of the same size. """ size = np.shape(M)[0] return np.kron(M,np.identity(size))
[docs] def ham(SpinSystem, elspins=None, nucspins=None): # Only using the hyperfine part at the moment as only section present in Nitroxides SpinVec = SpinSystem.Spins nStates = int(SpinSystem.nStates) nElectrons = SpinSystem.nElectrons nNuclei = SpinSystem.nNuclei Hhf = bsr_array((nStates,nStates),dtype=np.complex128); if nNuclei == 0: # If there are no Nuclei there this no hyperfine component return Hhf if elspins is None: elspins = np.arange(0,nElectrons) if nucspins is None: nucspins = np.arange(0,nNuclei) AMatrix = np.atleast_2d(SpinSystem.A) fullAMatrix = np.size(AMatrix,axis=0) > nNuclei # Generate Hamiltonian for hyperfine interaction for eSp in elspins: eidx = np.arange((eSp - 1) * 3, eSp * 3) for nsp in nucspins: if SpinSystem.I[nsp] == 0: continue if fullAMatrix: A = AMatrix[np.arange((nsp - 1) * 3, nsp * 3),eidx] else: A = np.diag(AMatrix[nsp, eidx]) # TODO: Transform matrix into molecular frame representation for c1,s1 in enumerate(['x','y','z']): for c2, s2 in enumerate(['x','y','z']): comps = ['e'] * len(SpinVec) comps[eSp] = s1 comps[nElectrons+nsp] = s2 comps = ''.join(comps) Hhf += A[c1,c2]*sop(SpinVec,comps) return (Hhf + Hhf.conj())/2
[docs] def ham_ez(SpinSystem, B=None, espins=None): bmagn = 9.274010078300000e-24 planck = 6.626070150000000e-34 spins = SpinSystem.Spins; nElectrons = SpinSystem.nElectrons; nStates = int(SpinSystem.nStates); if espins is None: espins = np.arange(0,nElectrons) muxM = bsr_array((nStates,nStates),dtype=np.complex128); muyM = bsr_array((nStates,nStates),dtype=np.complex128); muzM = bsr_array((nStates,nStates),dtype=np.complex128); pre = -bmagn/planck*SpinSystem.g # Hz/T pre = pre/1e9 #GHz/T = MHz/mT g= np.diag(pre) for i in espins: for k in range(3): comps = ['e'] * len(spins) comps[i] = ['x','y','z'][k] comps = ''.join(comps) Sk = sop(spins,comps) muxM += g[k,0]*Sk muyM += g[k,1]*Sk muzM += g[k,2]*Sk if B is None: return muxM, muyM, muzM else: return -(muxM*B[0] + muyM*B[1] + muzM*B[2])
[docs] def ham_nz(SpinSystem, B=None, nspins=None): bmagn = 9.274010078300000e-24 nmagn = 5.050783746100000e-27 planck = 6.626070150000000e-34 spins = SpinSystem.Spins; nElectrons = SpinSystem.nNuclei; nStates = int(SpinSystem.nStates); if nspins is None: nspins = np.arange(0,nElectrons) muxM = bsr_array((nStates,nStates),dtype=np.complex128); muyM = bsr_array((nStates,nStates),dtype=np.complex128); muzM = bsr_array((nStates,nStates),dtype=np.complex128); pre = +nmagn/planck * SpinSystem.gn * SpinSystem.gnscale # Hz/T pre = pre/1e9 #GHz/T = MHz/mT g= np.diag(pre) for i in nspins: #TODO: add sigma sigma = np.identity(3) for k in range(3): comps = ['e'] * len(spins) comps[nElectrons+i] = ['x','y','z'][k] comps = ''.join(comps) Sk = sop(spins,comps) muxM += pre[i]*Sk*sigma[0,k] muyM += pre[i]*Sk*sigma[1,k] muzM += pre[i]*Sk*sigma[2,k] if B is None: return muxM, muyM, muzM else: return -(muxM*B[0] + muyM*B[1] + muzM*B[2])
[docs] def resfields(system, Orientations, mwFreq, computeIntensities = True, RejectionRatio = 1e-8, Range = (0,1e8),Threshold = 0, computeFreq2Field = True): # Generate orientations nOrientations = Orientations.shape[0] averageOverChi = True H0 = ham(system) [muxe,muye,muze] = ham_ez(system) [muxn,muyn,muzn] = ham_nz(system) [mux,muy,muz] = [muxe + muxn,muye + muyn,muze + muzn] A = eyekron(H0) - kroneye(H0.conj()) + mwFreq*np.eye(H0.shape[0]**2); E = np.diag(eig(A, right=False)) if computeIntensities: mux_vec = mux.flatten() muy_vec = muy.flatten() muz_vec = muz.flatten() EigenFields = [] Intensities = [] for iOri,Ori in enumerate(Orientations): [xLab,yLab,zLab] = erot(Ori,'rows') muzL = zLab[0]*mux + zLab[1]*muy + zLab[2]*muz B = - kroneye(muzL.conj()) + eyekron(muzL) if computeIntensities: [Fields,Vecs] = eig(A,B); idx = np.argsort(Fields); Fields = Fields[idx] Vecs = Vecs[:, idx] mask = np.abs(Fields.imag) < (np.abs(Fields.real)* RejectionRatio) mask &= np.greater(Fields, 0) mask &= np.isfinite(Fields) mask &= np.greater(Fields, Range[0]) mask &= np.less(Fields, Range[1]) if np.equal(mask, False).all(): EigenFields.append([]) Intensities.append([]) else: EigenFields.append(Fields[mask].real) Vecs = Vecs[:,mask] # Normalize eigenvectors to unity Norms = np.sqrt(np.sum(np.abs(Vecs)**2,axis=0)) Vecs /= Norms[None,:] # Assuming never parallel mode muxL_vec = xLab[0]*mux_vec + xLab[1]*muy_vec + xLab[2]*muz_vec if averageOverChi: muyL_vec = yLab[0]*mux_vec + yLab[1]*muy_vec + yLab[2]*muz_vec TransitionRate = (np.abs((muxL_vec[:,None]*Vecs).sum(axis=0))**2 + np.abs((muyL_vec[:,None]*Vecs).sum(axis=0)**2))/2 else: TransitionRate = np.abs((muxL_vec[:,None]*Vecs).sum(axis=0))**2 Polarization = 1; Polarization = Polarization/np.prod(2*system.I+1); if computeFreq2Field: n = H0.shape[0] Vecs = np.reshape(Vecs,(n,n, int(Vecs.size/n**2)),order='F') dBdE = np.zeros(Vecs.shape[2]) for iVec in range(Vecs.shape[2]): V = Vecs[:,:,iVec] dBdE[iVec] = 1/np.abs(np.trace(-muzL@(V@V.conj().T - V.conj().T@V))) else: dBdE = np.ones(TransitionRate.shape) # Combine factors Intensities.append(Polarization * np.real(TransitionRate*dBdE).T) mask = Intensities[iOri] >= Threshold*Intensities[iOri].max(); EigenFields[iOri] = EigenFields[iOri][mask]; Intensities[iOri] = Intensities[iOri][mask]; return EigenFields, Intensities
[docs] def build_spectrum(system, mwFreq, Range, knots=19,npoints = 1000, Guass_broadening=0.25): """Build a field sweep spectrum Parameters ---------- system : SpinSystem The spin system it must include: I & S spins, g, A, gn mwFreq : float The microwave frequency in MHz Range : float The field range in mT knots : int, optional The number of knots of orientation averaging, by default 19 npoints : int, optional The number of points in the spectrum, by default 1000 Returns ------- xAxis: np.ndarray The xAxis in mT y: np.ndarray The spectrum intensities normalised to 1 """ phi,theta,Weights = dl.sophegrid(1,np.pi/2,knots) Orientations = np.vstack([phi,theta, np.zeros(phi.shape)]).T nOrientations = Orientations.shape[0] EigenFields, Intensities = resfields(system,Orientations,mwFreq) nReson = 0 for k in EigenFields: nReson += k.size nSites = 1 if isinstance(Range, np.ndarray): xAxis = Range xmin = Range.min() xmax = Range.max() npoints = Range.shape[0] prefactor = (npoints - 1)/(Range.max()-Range.min()) else: xAxis = np.linspace(*Range,npoints) xmin = Range[0] xmax = Range[1] prefactor = (npoints - 1)/(Range[1]-Range[0]) dx = xAxis[1]-xAxis[0] spec = np.zeros(npoints) for iOri in range(nOrientations): thisP = EigenFields[iOri] Amplitudes = Intensities[iOri] idxPos = np.around(1+prefactor*(thisP-xmin)) outofRange = np.less(idxPos,1) | np.greater(idxPos, npoints) spec[idxPos[~outofRange].astype(int)] += Amplitudes[~outofRange] * Weights[iOri] # Convolution broadening win = signal.windows.gaussian(npoints, Guass_broadening/dx) filtered = signal.convolve(spec, win, mode='same') filtered /= filtered.max() return xAxis, filtered