class RefocusedEcho2DAnalysis(dataset, sequence=None)

Analysis and calculation of Refocused Echo 2D data.

Parameters:
dataset

The dataset to be analyzed.

sequenceSequence, optional

The sequence object describing the experiment. (not currently used)

axis = '[]'
data
dataset
_smooth(elements=3)

Used SVD to smooth the 2D data.

Parameters:
elementsint, optional

The number of elements to use in the smoothing, by default 3

Returns:
np.ndarray

The smoothed data.

plot2D(contour=True, smooth=False, norm='Normal', axs=None, fig=None)

Create a 2D plot of the 2D relaxation data.

Parameters:
contourbool, optional

Plot the contour of the data, by default True

normstr, optional

Normalise the data, by default ‘Normal’. Options are ‘Normal’ and ‘tau2’. With ‘tau2’ normalisation, the data is normalised to the maximum of each row.

axsAxes, optional

The axes to plot to, by default None

figFigure, optional

The figure to plot to, by default None

plot1D(axs=None, fig=None)

Create a 1D plot of the 2D relaxation data.

Parameters:
axsAxes, optional

The axes to plot to, by default None

figFigure, optional

The figure to plot to, by default None

find_optimal(type, SNR_target, target_time, target_step, averages=None)

Calculate the optimal inter pulse delay for a given total measurment time, using either 4pulse or 5pulse data.

Parameters:
typestr

The type of data to use, either ‘4pDEER’ or ‘5pDEER’

SNR_targetfloat

The Signal to Noise ratio target.

target_timefloat

The target time in hours

target_step: float

The target step size in ns.

averagesint, optional

The total number of shots taken, by default None. If None, the number of shots will be calculated from the dataset.

Returns:
tau1: float

The calculated optimal tau1 in us

tau2: float

The calculated optimal tau2 in us

optimal_tau1(tau2=None)