class Pulse(*, tp, t=None, scale=None, flipangle=None, pcyc=[0], name=None, **kwargs)

Represents a general experimental pulse.

The class for a general pulse.

Parameters:
tpfloat

The pulse length in ns.

scalefloat

The arbitary experimental pulse amplitude, 0-1.

tfloat, optional

The pulse start time in ns.

property bandwidth
property amp_factor

The B1 amplitude factor (nutation frequency) for the pulse in GHz

name
Progression = 'False'
_addPhaseCycle(phases, detections=None)

Adds a phase cycle to the pulse sequence.

Args:

phases (list): List of phases to add to the phase cycle. detections (list, optional): List of detection signs. Defaults to None. If None then all cycles are summed.

Returns:

None

_buildFMAM(func, ax=None)

Builds the amplitude modulation (AM) and frequency modulation (FM) of a given function.

Args:

func: A function that takes in an array of values and returns two arrays, representing the AM and FM of the function.

Returns:

Two arrays representing the AM and FM of the function.

build_shape(ax=None)
build_table()

Builds a table of variables, axes, and UUIDs for all non-static Parameters in the object.

Returns:

dict: A dictionary containing the following keys: “Variable”, “axis”, and “uuid”. The values for each key are lists of the corresponding values for each non-static Parameter.

is_static()

Check if all parameters in the pulse object are static.

Returns:

bool: True if all parameters are static, False otherwise.

isDelayFocused()

Does the pulse contain a specified time, t?

If so then it is not delay focused.

isPulseFocused()

Does the pulse contain a specified time, t?

If so then it is delay focused.

plot(pad=1000)

Plots the time domain representation of this pulse.

Parameters:
padint, optional

The number of zeros to pad the data with, by default 1000

_calc_fft(pad=10000)
exciteprofile(freqs=None, resonator=None)

Excitation profile

Generates the exciatation profiles for this pulse.

This function is ported from EasySpin (https://easyspin.org/easyspin/documentation/sop.html) [1-2], and based upon the method from Gunnar Jeschke, Stefan Pribitzer and Andrin Doll[3].

References:

[1] Stefan Stoll, Arthur Schweiger EasySpin, a comprehensive software package for spectral simulation and analysis in EPR J. Magn. Reson. 178(1), 42-55 (2006)

[2] Stefan Stoll, R. David Britt General and efficient simulation of pulse EPR spectra Phys. Chem. Chem. Phys. 11, 6614-6625 (2009)

[3] Jeschke, G., Pribitzer, S. & DollA. Coherence Transfer by Passage Pulses in Electron Paramagnetic Resonance Spectroscopy. J. Phys. Chem. B 119, 13570-13582 (2015)

Parameters:
freqs: np.ndarray, optional

The frequency axis. Caution: A larger number of points will linearly increase computation time.

resonator: ad.ResonatorProfile, optional
Returns:
Mx: np.ndarray

The magentisation in the X direction.

My: np.ndarray

The magentisation in the Y direction.

Mz: np.ndarray

The magentisation in the Z direction.

plot_fft()
_pcyc_str()
__str__()
copy(clear=False, **kwargs)

Creates a deep-copy of the pulse. I.e. Every parameter object is re-created at another memory space.

Parameter can be chaged at this stage by adding them as keyword- arguments (kwargs).

Returns:
Pulse

A deep copy of the pulse

_to_dict()
_to_json()
save(filename)

Save the Pulse to a JSON file.

Parameters:
filenamestr

Path to the JSON file.

Returns:
None
Raises:
TypeError

If the object cannot be serialized to JSON.

classmethod _from_dict(dct)
classmethod _from_json(JSONstring)
classmethod load(filename)

Load a Pulse object from a JSON file.

Parameters:
filenamestr

Path to the JSON file.

Returns:
objPulse

The Pulse loaded from the JSON file.

Raises:
FileNotFoundError

If the file does not exist.