autodeer.Relaxation¶
Module Contents¶
Classes¶
| Analysis and calculation of Carr Purcell decay. | |
| Analysis and calculation of Reptime based saturation recovery. | |
| Analysis and calculation of Refocused Echo 2D data. | 
Functions¶
| 
 | Detect if the dataset is an ESEEM experiment. | 
| 
 | Create a superimposed plot of relaxation data and fits. | 
Attributes¶
- class autodeer.Relaxation.CarrPurcellAnalysis(dataset, sequence=None)[source]¶
- Analysis and calculation of Carr Purcell decay. - Parameters:
- dataset
- _description_ 
 
- Parameters:
- sequence (autodeer.sequences.Sequence) 
 - fit(type='mono')[source]¶
- Fit the experimental CP decay - Parameters:
- typestr, optional
- Either a mono or double exponential decay model, by default “mono” 
 
- Parameters:
- type (str) 
 
 - plot(norm=True, axs=None, fig=None)[source]¶
- Plot the carr purcell decay with fit, if avaliable. - Parameters:
- normbool, optional
- Normalise the fit to a maximum of 1, by default True 
 
- Returns:
- Figure
- The figure. 
 
- Parameters:
- norm (bool) 
- Return type:
- matplotlib.figure.Figure 
 
 - check_decay(level=0.05)[source]¶
- Checks that the data has decayed by over 5% in the entire length and less than 5% in the first 30% of the data. - Parameters:
- levelfloat, optional
- The level to check the decay, by default 0.05 
 
- Returns:
- int
- 0 if both conditions are met, 1 if the decay is less than 5% in the first 30% of the data, and -1 if the decay is less than 5% in the entire length. 
 
 
 - find_optimal(SNR_target, target_time, target_step, averages=None)[source]¶
- Calculate the optimal inter pulse delay for a given total measurment time. - Parameters:
- SNR_target: float,
- The Signal to Noise ratio target. 
- target_timefloat
- The target time in hours 
- target_shrtfloat
- The shot repettition time of target in seconds 
- target_step: float
- The target step size in ns. 
- averagesint, optional
- The total number of shots taken, by default None. If None, the number of shots will be calculated from the dataset. 
 
- Returns:
- float
- The calculated optimal time in us 
 
- Parameters:
- target_time (float) 
- Return type:
- float 
 
 
- class autodeer.Relaxation.ReptimeAnalysis(dataset, sequence=None)[source]¶
- Analysis and calculation of Reptime based saturation recovery. - Parameters:
- dataset
- The dataset to be analyzed. 
- sequenceSequence, optional
- The sequence object describing the experiment. (not currently used) 
 
- Parameters:
- sequence (autodeer.sequences.Sequence) 
 
- autodeer.Relaxation.detect_ESEEM(dataset, type='deuteron', threshold=1.5)[source]¶
- Detect if the dataset is an ESEEM experiment. - Parameters:
- datasetxr.DataArray
- The dataset to be analyzed. 
- typestr, optional
- The type of ESEEM experiment, either deuteron or proton, by default ‘deuteron’ 
- thresholdfloat, optional
- The SNR threshold for detection, by default 1.5 
 
- Returns:
- bool
- True if ESEEM is detected, False if not. 
 
 
- autodeer.Relaxation.plot_1Drelax(*args, fig=None, axs=None, cmap=cmap)[source]¶
- Create a superimposed plot of relaxation data and fits. - Parameters:
- argsad.Analysis
- The 1D relaxation data to be plotted. 
- figFigure, optional
- The figure to plot to, by default None 
- axsAxes, optional
- The axes to plot to, by default None 
- cmaplist, optional
- The color map to use, by default ad.cmap 
 
 
- class autodeer.Relaxation.RefocusedEcho2DAnalysis(dataset, sequence=None)[source]¶
- Analysis and calculation of Refocused Echo 2D data. - Parameters:
- dataset
- The dataset to be analyzed. 
- sequenceSequence, optional
- The sequence object describing the experiment. (not currently used) 
 
- Parameters:
- sequence (autodeer.sequences.Sequence) 
 - _smooth(elements=3)[source]¶
- Used SVD to smooth the 2D data. - Parameters:
- elementsint, optional
- The number of elements to use in the smoothing, by default 3 
 
- Returns:
- np.ndarray
- The smoothed data. 
 
 
 - plot2D(contour=True, smooth=False, norm='Normal', axs=None, fig=None)[source]¶
- Create a 2D plot of the 2D relaxation data. - Parameters:
- contourbool, optional
- Plot the contour of the data, by default True 
- normstr, optional
- Normalise the data, by default ‘Normal’. Options are ‘Normal’ and ‘tau2’. With ‘tau2’ normalisation, the data is normalised to the maximum of each row. 
- axsAxes, optional
- The axes to plot to, by default None 
- figFigure, optional
- The figure to plot to, by default None 
 
 
 - plot1D(axs=None, fig=None)[source]¶
- Create a 1D plot of the 2D relaxation data. - Parameters:
- axsAxes, optional
- The axes to plot to, by default None 
- figFigure, optional
- The figure to plot to, by default None 
 
 
 - find_optimal(type, SNR_target, target_time, target_step, averages=None)[source]¶
- Calculate the optimal inter pulse delay for a given total measurment time, using either 4pulse or 5pulse data. - Parameters:
- typestr
- The type of data to use, either ‘4pDEER’ or ‘5pDEER’ 
- SNR_targetfloat
- The Signal to Noise ratio target. 
- target_timefloat
- The target time in hours 
- target_step: float
- The target step size in ns. 
- averagesint, optional
- The total number of shots taken, by default None. If None, the number of shots will be calculated from the dataset. 
 
- Returns:
- tau1: float
- The calculated optimal tau1 in us 
- tau2: float
- The calculated optimal tau2 in us 
 
- Parameters:
- type (str) 
- target_time (float) 
 
- Return type:
- float