autodeer.Relaxation
¶
Module Contents¶
Classes¶
Analysis and calculation of Carr Purcell decay. |
|
Analysis and calculation of Reptime based saturation recovery. |
|
Analysis and calculation of Refocused Echo 2D data. |
Functions¶
|
Detect if the dataset is an ESEEM experiment. |
|
Create a superimposed plot of relaxation data and fits. |
Attributes¶
- class autodeer.Relaxation.CarrPurcellAnalysis(dataset, sequence=None)[source]¶
Analysis and calculation of Carr Purcell decay.
- Parameters:
- dataset
_description_
- Parameters:
sequence (autodeer.sequences.Sequence)
- fit(type='mono')[source]¶
Fit the experimental CP decay
- Parameters:
- typestr, optional
Either a mono or double exponential decay model, by default “mono”
- Parameters:
type (str)
- plot(norm=True, axs=None, fig=None)[source]¶
Plot the carr purcell decay with fit, if avaliable.
- Parameters:
- normbool, optional
Normalise the fit to a maximum of 1, by default True
- Returns:
- Figure
The figure.
- Parameters:
norm (bool)
- Return type:
matplotlib.figure.Figure
- check_decay(level=0.05)[source]¶
Checks that the data has decayed by over 5% in the entire length and less than 5% in the first 30% of the data.
- Parameters:
- levelfloat, optional
The level to check the decay, by default 0.05
- Returns:
- int
0 if both conditions are met, 1 if the decay is less than 5% in the first 30% of the data, and -1 if the decay is less than 5% in the entire length.
- find_optimal(SNR_target, target_time, target_step, averages=None)[source]¶
Calculate the optimal inter pulse delay for a given total measurment time.
- Parameters:
- SNR_target: float,
The Signal to Noise ratio target.
- target_timefloat
The target time in hours
- target_shrtfloat
The shot repettition time of target in seconds
- target_step: float
The target step size in ns.
- averagesint, optional
The total number of shots taken, by default None. If None, the number of shots will be calculated from the dataset.
- Returns:
- float
The calculated optimal time in us
- Parameters:
target_time (float)
- Return type:
float
- class autodeer.Relaxation.ReptimeAnalysis(dataset, sequence=None)[source]¶
Analysis and calculation of Reptime based saturation recovery.
- Parameters:
- dataset
The dataset to be analyzed.
- sequenceSequence, optional
The sequence object describing the experiment. (not currently used)
- Parameters:
sequence (autodeer.sequences.Sequence)
- autodeer.Relaxation.detect_ESEEM(dataset, type='deuteron', threshold=1.5)[source]¶
Detect if the dataset is an ESEEM experiment.
- Parameters:
- datasetxr.DataArray
The dataset to be analyzed.
- typestr, optional
The type of ESEEM experiment, either deuteron or proton, by default ‘deuteron’
- thresholdfloat, optional
The SNR threshold for detection, by default 1.5
- Returns:
- bool
True if ESEEM is detected, False if not.
- autodeer.Relaxation.plot_1Drelax(*args, fig=None, axs=None, cmap=cmap)[source]¶
Create a superimposed plot of relaxation data and fits.
- Parameters:
- argsad.Analysis
The 1D relaxation data to be plotted.
- figFigure, optional
The figure to plot to, by default None
- axsAxes, optional
The axes to plot to, by default None
- cmaplist, optional
The color map to use, by default ad.cmap
- class autodeer.Relaxation.RefocusedEcho2DAnalysis(dataset, sequence=None)[source]¶
Analysis and calculation of Refocused Echo 2D data.
- Parameters:
- dataset
The dataset to be analyzed.
- sequenceSequence, optional
The sequence object describing the experiment. (not currently used)
- Parameters:
sequence (autodeer.sequences.Sequence)
- _smooth(elements=3)[source]¶
Used SVD to smooth the 2D data.
- Parameters:
- elementsint, optional
The number of elements to use in the smoothing, by default 3
- Returns:
- np.ndarray
The smoothed data.
- plot2D(contour=True, smooth=False, norm='Normal', axs=None, fig=None)[source]¶
Create a 2D plot of the 2D relaxation data.
- Parameters:
- contourbool, optional
Plot the contour of the data, by default True
- normstr, optional
Normalise the data, by default ‘Normal’. Options are ‘Normal’ and ‘tau2’. With ‘tau2’ normalisation, the data is normalised to the maximum of each row.
- axsAxes, optional
The axes to plot to, by default None
- figFigure, optional
The figure to plot to, by default None
- plot1D(axs=None, fig=None)[source]¶
Create a 1D plot of the 2D relaxation data.
- Parameters:
- axsAxes, optional
The axes to plot to, by default None
- figFigure, optional
The figure to plot to, by default None
- find_optimal(type, SNR_target, target_time, target_step, averages=None)[source]¶
Calculate the optimal inter pulse delay for a given total measurment time, using either 4pulse or 5pulse data.
- Parameters:
- typestr
The type of data to use, either ‘4pDEER’ or ‘5pDEER’
- SNR_targetfloat
The Signal to Noise ratio target.
- target_timefloat
The target time in hours
- target_step: float
The target step size in ns.
- averagesint, optional
The total number of shots taken, by default None. If None, the number of shots will be calculated from the dataset.
- Returns:
- tau1: float
The calculated optimal tau1 in us
- tau2: float
The calculated optimal tau2 in us
- Parameters:
type (str)
target_time (float)
- Return type:
float