deerlab.dd_shell

dd_shell = <deerlab.model.Model object>

Uniform distribution of particles on a spherical shell

Parameters:
rarray_like

Distance axis, in nanometers.

radiusscalar

Inner shell radius.

thicknessscalar

Shell thickness.

Returns:
Pndarray

Distance distribution.

Notes

Parameter List

Name

Lower

Upper

Type

Frozen

Unit

Description

radius

0.1

20

nonlin

No

nm

Inner shell radius

thickness

0.1

20

nonlin

No

nm

Shell thickness

Model




P(r) = \left(R_2^6 P_\mathrm{B}(r|R_2) - R_1^6 P_\mathrm{B}(r|R_1) - 2(r_2^3 - r_1^3)P_\mathrm{BS}(r|R_1,R_2)\right)/(R_2^3 - R_1^3)^2

with

P_\mathrm{BS}(r|R_i,R_j) = \frac{3}{16R_i^3(R_j^3 - R_i^3)}\begin{cases} 12r^3R_i^2 - r^5  \quad \text{for} \quad 0\leq r < \min(2R_i,R_j - R_i) \\ 8r^2(R_j^3 - R_i^3) - 3r(R_j^2 - R_i^2)^2 - 6r^3(R_j - R_i)(R_j + R_i) \quad \text{for} \quad R_j-R_i \leq r < 2R_i \\ 16r^2R_i^3 \quad \text{for} \quad 2R_i\leq r < R_j - R_i  \\  r^5 - 6r^3(R_j^2 + R_i^2) + 8r^2(R_j^3 + R_i^3) - 3r(R_j^2 - R1_2)^2 \quad \text{for} \quad \max(R_j-R_i,2R_i) \leq r < R_i+R_j \\ 0 \quad \text{for} \quad \text{otherwise}  \end{cases}

P_\mathrm{B}(r|R_i) = \begin{cases} \frac{3r^5}{16R_i^6} - \frac{9r^3}{4R_i^4} + \frac{3r^2}{R_i^3} \quad \text{for} \quad 0 \leq r < 2R_i \\ 0 \quad \text{for} \quad \text{otherwise}  \end{cases}

and

R_1 = R

R_2 = R + w

where R is the inner shell radius, and w is the shell thickness.

References

[1]

D.R. Kattnig, D. Hinderberger, Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance, JMR, 230, 50-63, 2013

Examples

Example of the model evaluated at the start values of the parameters:

(Source code, png, hires.png, pdf)

../_images/deerlab-dd_shell-1.png