Note
Go to the end to download the full example code.
Global fitting of multiple 4-pulse DEER signals, non-parametric distribution¶
How to fit multiple 4-pulse DEER signals to a model with a non-parametric distribution and a homogeneous background.
import numpy as np
import matplotlib.pyplot as plt
import deerlab as dl
# File location
path = '../data/'
files = [
'example_4pdeer_3.DTA',
'example_4pdeer_4.DTA',
]
# Experimental parameters
tau1s = [0.3, 0.5] # First inter-pulse delay, μs
tau2s = [2.0, 4.0] # Second inter-pulse delay, μs
tmins = [0.1, 0.3] # Start time, μs
Vmodels,ts,Vs = [],[],[]
for file, tau1, tau2, tmin in zip(files, tau1s, tau2s, tmins):
# Load the experimental data
t,Vexp = dl.deerload(path + file)
# Pre-processing
Vexp = dl.correctphase(Vexp) # Phase correction
Vexp = Vexp/np.max(Vexp) # Rescaling (aesthetic)
t = t - t[0] # Account for zerotime
t = t + tmin
# Distance vector
r = np.arange(1.5,7,0.05) # nm
# Put the datasets into lists
ts.append(t)
Vs.append(Vexp)
# Construct the dipolar models for the individual signals
Vmodels.append(dl.dipolarmodel(t,r, experiment=dl.ex_4pdeer(tau1,tau2,pathways=[1])) )
# Make the global model by joining the individual models
globalmodel = dl.merge(*Vmodels)
# Link the distance distribution into a global parameter
globalmodel = dl.link(globalmodel,P=['P_1','P_2'])
# Compactness criterion for the global distance distribution
compactness = dl.dipolarpenalty(Pmodel=None,r=r,type='compactness')
# Fit the model to the data
results = dl.fit(globalmodel,Vs, weights=[1,1],penalties=compactness)
plt.figure(figsize=[10,7])
violet = '#4550e6'
for n in range(len(results.model)):
# Extract fitted dipolar signal
Vfit = results.model[n]
# Extract fitted distance distribution
Pfit = results.P
Pci95 = results.PUncert.ci(95)
Pci50 = results.PUncert.ci(50)
plt.subplot(2,2,2*n+1)
# Plot experimental data
plt.plot(ts[n],Vs[n],'.',color='grey',label='Data')
# Plot the fitted signal
plt.plot(ts[n],Vfit,linewidth=3,color=violet,label='Fit')
plt.legend(frameon=False,loc='best')
plt.xlabel('Time $t$ (μs)')
plt.ylabel('$V(t)$ (arb.u.)')
# Plot the distance distribution
plt.subplot(122)
plt.plot(r,Pfit,linewidth=3,label='Fit',color=violet)
plt.fill_between(r,Pci95[:,0],Pci95[:,1],alpha=0.3,color=violet,label='95%-Conf. Inter.',linewidth=0)
plt.fill_between(r,Pci50[:,0],Pci50[:,1],alpha=0.5,color=violet,label='50%-Conf. Inter.',linewidth=0)
plt.legend(frameon=False,loc='best')
plt.autoscale(enable=True, axis='both', tight=True)
plt.xlabel('Distance $r$ (nm)')
plt.ylabel('$P(r)$ (nm$^{-1}$)')
plt.tight_layout()
plt.show()
Total running time of the script: (4 minutes 6.943 seconds)