deerlab.hccm¶
- hccm(J, residual, mode='HC1')[source]¶
Heteroscedasticity Consistent Covariance Matrix (HCCM)
Computes the heteroscedasticity consistent covariance matrix (HCCM) of a given LSQ problem given by the Jacobian matrix and the residual vector of a least-squares problem. The HCCM are valid for both heteroscedasticit and homoscedasticit residual vectors.
- Parameters:
- JNxM-element ndarray
Jacobian matrix of the residual vector
- residualN-element ndarray
Vector of residuals
- modestring, optional
HCCM estimation method:
'HC0'
- White, 1980 [1]'HC1'
- MacKinnon and White, 1985 [2]'HC2'
- MacKinnon and White, 1985 [2]'HC3'
- Davidson and MacKinnon, 1993 [3]'HC4'
- Cribari-Neto, 2004 [4]'HC5'
- Cribari-Neto, 2007 [5]
If not specified, it defaults to
'HC1'
- Returns:
- CMxM-element ndarray
Heteroscedasticity consistent covariance matrix
References
[1]White, H. (1980). A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica, 48(4), 817-838 DOI: 10.2307/1912934
[2] (1,2)MacKinnon and White, (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29 (1985), pp. 305-325. DOI: 10.1016/0304-4076(85)90158-7
[3]Davidson and MacKinnon, (1993). Estimation and Inference in Econometrics Oxford University Press, New York.
[4]Cribari-Neto, F. (2004). Asymptotic inference under heteroskedasticity of unknown form. Computational Statistics & Data Analysis, 45(1), 215-233 DOI: 10.1016/s0167-9473(02)00366-3
[5]Cribari-Neto, F., Souza, T. C., & Vasconcellos, K. L. P. (2007). Inference under heteroskedasticity and leveraged data. Communications in Statistics – Theory and Methods, 36(10), 1877-1888. DOI: 10.1080/03610920601126589