deerlab.dd_shellshell

dd_shellshell = <deerlab.model.Model object>

Particles uniformly distributed on a spherical shell and on another concentric spherical shell.

Parameters:
rarray_like

Distance axis, in nanometers.

radiusscalar

Inner shell radius.

thickness1scalar

Inner shell thickness.

thickness2scalar

Outer shell thickness.

Returns:
Pndarray

Distance distribution.

Notes

Parameter List

Name

Lower

Upper

Type

Frozen

Unit

Description

radius

0.1

20

nonlin

No

nm

Inner shell radius

thickness1

0.1

20

nonlin

No

nm

Inner shell thickness

thickness2

0.1

20

nonlin

No

nm

Outer shell thickness

Model




P(r) = (R_1^3(R_2^3 - R_1^3)P_\mathrm{BS}(r|R_1,R_2) - R_1^3(R_3^3 - R_1^3)P_\mathrm{BS}(r|R_1,R_3) - R_2^3(R_3^3 - R_2^3)P_\mathrm{BS}(r|R_2,R_3))/((R_3^3 - R_2^3)(R_2^3 - R_1^3))

with

P_\mathrm{BS}(r|R_i,R_j) = \frac{3}{16R_i^3(R_j^3 - R_i^3)}\begin{cases} 12r^3R_i^2 - r^5  \quad \text{for} \quad 0\leq r < \min(2R_i,R_j - R_i) \\ 8r^2(R_j^3 - R_i^3) - 3r(R_j^2 - R_i^2)^2 - 6r^3(R_j - R_i)(R_j + R_i) \quad \text{for} \quad R_j-R_i \leq r < 2R_i \\ 16r^2R_i^3 \quad \text{for} \quad 2R_i\leq r < R_j - R_i  \\  r^5 - 6r^3(R_j^2 + R_i^2) + 8r^2(R_j^3 + R_i^3) - 3r(R_j^2 - R1_2)^2 \quad \text{for} \quad \max(R_j-R_i,2R_i) \leq r < R_i+R_j \\ 0 \quad \text{for} \quad \text{otherwise}  \end{cases}

and

R_1 = R

R_2 = R + w_1

R_3 = R + w_1 + w_2

where R is the inner shell’s radius, and w1 and w2 denote the thickness of the inner and outer shells, respectively.

References

[1]

D.R. Kattnig, D. Hinderberger, Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance, JMR, 230, 50-63, 2013

Examples

Example of the model evaluated at the start values of the parameters:

(Source code, png, hires.png, pdf)

../_images/deerlab-dd_shellshell-1.png