deerlab.whitegaussnoise¶
- whitegaussnoise(t, std, rescale=False, seed=None)[source]¶
Generates a vector of white Gaussian (normal) noise
The noise vector is generated by sampling from a Gaussian distribution with zero mean and standard deviation specified by the user.
- Parameters:
- tarray_like
Vector of times at which generate noise.
- stdfloat scalar
Noise level, i.e. standard deviation of underlying Gaussian distribution.
- rescaleboolean, optional
If
True, rescales the noise vector such that its standard deviation is exactly equal tostd. IfFalse(default), the standard deviation of the noise vector can deviate slightly fromstd, particularly for short vectors.- seedinteger scalar, optional
If
None(default), do not seed the random number generator. If an integer scalar is given (e.g.seed=137), seed the random number generator with this number.
- Returns:
- noisendarray
Noise vector.
Notes
The noise vector is generated using pseudo-random numbers generated with NumPy. Without seeding the random number generator, subsequent calls of
whitegaussnoisereturn different realizations of the noise vector. To obtain a reproducible noise realization, seed the random number generator by using theseedkewyword arguement, or callnumpy.random.seed(k)with some integer numberkbefore callingwhitegaussnoise.