deerlab.dd_shellvoidsphere

dd_shellvoidsphere = <deerlab.model.Model object>

Particles uniformly distributed on a sphere and on a concentric outer spherical shell separated by a void.

Parameters:
rarray_like

Distance axis, in nanometers.

radiusscalar

Sphere radius.

thicknessscalar

Outer shell thickness.

separationscalar

Shell-sphere separation.

Returns:
Pndarray

Distance distribution.

Notes

Parameter List

Name

Lower

Upper

Type

Frozen

Unit

Description

radius

0.1

20

nonlin

No

nm

Sphere radius

thickness

0.1

20

nonlin

No

nm

Outer shell thickness

separation

0.1

20

nonlin

No

nm

Shell-sphere separation

Model




P(r) = ((R_3^3 - R_1^3)P_\mathrm{BS}(r|R_1,R_3) - (R_2^3 - R_1^3)P_\mathrm{BS}(r|R_1,R_2) )/(R_3^3 - R_2^3)

with

P_\mathrm{BS}(r|R_i,R_j) = \frac{3}{16R_i^3(R_j^3 - R_i^3)}\begin{cases} 12r^3R_i^2 - r^5  \quad \text{for} \quad 0\leq r < \min(2R_i,R_j - R_i) \\ 8r^2(R_j^3 - R_i^3) - 3r(R_j^2 - R_i^2)^2 - 6r^3(R_j - R_i)(R_j + R_i) \quad \text{for} \quad R_j-R_i \leq r < 2R_i \\ 16r^2R_i^3 \quad \text{for} \quad 2R_i\leq r < R_j - R_i  \\  r^5 - 6r^3(R_j^2 + R_i^2) + 8r^2(R_j^3 + R_i^3) - 3r(R_j^2 - R1_2)^2 \quad \text{for} \quad \max(R_j-R_i,2R_i) \leq r < R_i+R_j \\ 0 \quad \text{for} \quad \text{otherwise}  \end{cases}

and

R_1 = R

R_2 = R + d

R_3 = R + d + w

where R is the inner sphere’s radius, w is the thickness of the outer shell, and d is the shell-sphere separation.

References

[1]

D.R. Kattnig, D. Hinderberger, Analytical distance distributions in systems of spherical symmetry with applications to double electron-electron resonance, JMR, 230, 50-63, 2013

Examples

Example of the model evaluated at the start values of the parameters:

(Source code, png, hires.png, pdf)

../_images/deerlab-dd_shellvoidsphere-1.png