Note
Go to the end to download the full example code.
Basic analysis of a sparsely sampled 4-pulse DEER signal¶
Fit a simple sparsely 4-pulse DEER signal (only 10% of the points have been sampled) with a model with a non-parametric distribution and a homogeneous background, using Tikhonov regularization.
Nota that no modifications are required when analyzing sparse sampled data in contrast to densely sampled data.
import numpy as np
import matplotlib.pyplot as plt
import deerlab as dl
# File location
path = '../data/'
datafile = 'experimental_sparse_ptbp1_4pdeer.DTA'
timingsfile = 'experimental_sparse_4pdeer_timings.DTA'
# Experimental parameters
tau1 = 0.400 # First inter-pulse delay, μs
tau2 = 8.000 # Second inter-pulse delay, μs
tmin = 0.482 # Start time, μs
# Load the experimental data and the grid of recorded timings (this depends on how the data were acquired)
_,Vexp = dl.deerload(path + datafile)
_,t = dl.deerload(path + timingsfile)
t = t/1000 # ns -> μs
# Pre-processing
Vexp = dl.correctphase(Vexp) # Phase correction
Vexp = Vexp/np.max(Vexp) # Rescaling (aesthetic)
t = t - t[0] # Account for zerotime
t = t + tmin
# Distance vector
r = np.arange(2,10,0.05) # nm
# Construct the model with the sparse sampled time vector
Vmodel = dl.dipolarmodel(t,r, experiment = dl.ex_4pdeer(tau1,tau2, pathways=[1]))
compactness = dl.dipolarpenalty(Pmodel=None, r=r, type='compactness')
# Fit the model to the data
results = dl.fit(Vmodel,Vexp, penalties = compactness)
# Print results summary
print(results)
Goodness-of-fit:
========= ============= ============= ===================== =======
Dataset Noise level Reduced 𝛘2 Residual autocorr. RMSD
========= ============= ============= ===================== =======
#1 0.012 0.951 0.955 0.011
========= ============= ============= ===================== =======
Model hyperparameters:
========================== ===================
Regularization parameter Penalty weight #1
========================== ===================
0.064 0.245
========================== ===================
Model parameters:
=========== ======== ========================= ====== ======================================
Parameter Value 95%-Confidence interval Unit Description
=========== ======== ========================= ====== ======================================
mod 0.217 (0.200,0.233) Modulation depth
reftime 0.402 (0.352,0.448) μs Refocusing time
conc 68.088 (68.088,68.088) μM Spin concentration
P ... (...,...) nm⁻¹ Non-parametric distance distribution
P_scale 0.998 (0.984,1.012) None Normalization factor of P
=========== ======== ========================= ====== ======================================
# Evaluate the fitted dipolar signal over the densely sampled vector
dt = min(np.diff(t))
tuniform = np.arange(min(t),max(t),dt)
Vuniform = dl.dipolarmodel(tuniform,r, experiment = dl.ex_4pdeer(tau1,tau2, pathways=[1]))
Vfit = results.evaluate(Vuniform)
# Extract fitted distance distribution
Pfit = results.P
Pci95 = results.PUncert.ci(95)
Pci50 = results.PUncert.ci(50)
# Extract the unmodulated contribution
Bfcn = lambda mod,conc,reftime: results.P_scale*(1-mod)*dl.bg_hom3d(tuniform-reftime,conc,mod)
Bfit = results.evaluate(Bfcn)
Bci = results.propagate(Bfcn).ci(95)
plt.figure(figsize=[6,7])
violet = '#4550e6'
plt.subplot(211)
# Plot experimental and fitted data
plt.plot(t,Vexp,'.',color='grey',label='Data')
plt.plot(tuniform,Vfit,linewidth=3,color=violet,label='Fit')
plt.plot(tuniform,Bfit,'--',linewidth=3,color=violet,label='Unmodulated contribution')
plt.fill_between(tuniform,Bci[:,0],Bci[:,1],color=violet,alpha=0.3)
plt.legend(frameon=False,loc='best')
plt.xlabel('Time $t$ (μs)')
plt.ylabel('$V(t)$ (arb.u.)')
# Plot the distance distribution
plt.subplot(212)
plt.plot(r,Pfit,color=violet,linewidth=3,label='Fit')
plt.fill_between(r,Pci95[:,0],Pci95[:,1],alpha=0.3,color=violet,label='95%-Conf. Inter.',linewidth=0)
plt.fill_between(r,Pci50[:,0],Pci50[:,1],alpha=0.5,color=violet,label='50%-Conf. Inter.',linewidth=0)
plt.legend(frameon=False,loc='best')
plt.autoscale(enable=True, axis='both', tight=True)
plt.xlabel('Distance $r$ (nm)')
plt.ylabel('$P(r)$ (nm$^{-1}$)')
plt.tight_layout()
plt.show()
Total running time of the script: (3 minutes 31.812 seconds)