# dipolarkernel.py - Dipolar kernel operator
# -----------------------------------------------
# This file is a part of DeerLab. License is MIT (see LICENSE.md).
# Copyright(c) 2019-2023: Luis Fabregas, Stefan Stoll and other contributors.
# Numpy + SciPy
import numpy as np
from numpy import inf
from scipy.integrate import quad_vec, quad
from scipy.special import fresnel
from scipy.interpolate import make_interp_spline,interp1d
# Other packages
import numexpr as ne
import types
import warnings
from memoization import cached
# DeerLab dependencies
from deerlab.dipolarbackground import dipolarbackground
from deerlab.utils import sophegrid
from deerlab.constants import *
[docs]
def dipolarkernel(t, r, *, pathways=None, mod=None, bg=None, method='fresnel', excbandwidth=inf, orisel=None, g=None,
integralop=True, gridsize=1000, complex=False, clearcache=False, memorylimit=8, tinterp=None):
#===================================================================================================
r"""
Compute the (multi-pathway) dipolar kernel operator.
The function computes the two-spin interaction dipolar kernel which accounts for the structure and shape of the echo modulation
due to intra- and inter-molecular dipolar interactions over a sample. The dipolar kernel is constructed from the
contributions arising from different dipolar pathways [1]_ during a pulse sequence. The two-spin dipolar kernel reads:
.. math::
K(\mathbf{t},r) = \Lambda_0 + \sum_k \lambda_k
\int_0^\pi \mathrm{d}\theta \sin(\theta)
\exp\Bigg(-i \frac{D\mathbf{\delta}_k (\mathbf{t} - \mathbf{t}_{\mathrm{ref},k})}{r^3}(1-3\cos(\theta)^2) \Bigg)
\prod_k B(\lambda_k, \mathbf{\delta}_k (\mathbf{t} - \mathbf{t}_{\mathrm{ref},k}))
where `\mathbf{t}=(t_1,\dots,t_D)` are the experimental time incrementation vectors of a `D`-dimensional experiment
and `r` represents the interspin distance. The dipolar pathways are characterized by their amplitudes `\lambda_k`,
their refocusing times `\mathbf{t}_{\mathrm{ref},k}`, and their (sub)harmonic factors `\mathbf{\delta}_k`. The constant factor
`\Lambda_0` represents the total amplitude of all unmodulated contributions. The function `B(\lambda,t)` represents
the background function due to the intermolecular contributions. The dipolar signal due to two-spin contributions given a
distance distribution `P(r)` is given by the linear Fredholm integral
.. math::
V(\mathbf{t}) = \int_0^\infty \mathrm{d}r P(r) K(\mathbf{t},r)
The function can also compute three-spin interaction dipolar kernels that account for the additional the structure and shape
of the echo modulation in multi-spin systems [2]_. The three-spin dipolar kernel is constructed from the
contributions arising from the combinations of different pair dipolar pathways [2]_ during a pulse sequence.
The three-spin dipolar kernel reads:
.. math::
K^{(3)}(\mathbf{t},\mathbf{r}) = & \Lambda_0 + \sum_k \lambda_k \frac{1}{2\pi}
\int_0^{2\pi}\mathrm{d}\varphi
\int_0^{\pi}\mathrm{d}\theta_1
\sin(\theta_1)
\exp\Bigg(-i \sum_q^3 \frac{D \delta_{k,q}(\mathbf{t} - \mathbf{t}_{\mathrm{ref},k,q})}{r_q^3}
(1 - 3\cos(\theta_{1q})^2 \Bigg)
\prod_k\prod_q^3 B(\lambda_k, \mathbf{\delta}_{k,q} (\mathbf{t} - \mathbf{t}_{\mathrm{ref},k,q}))
with `\cos(\theta_{1q}) = \sin\chi_{1q} \cos\varphi \sin\theta_1 + \cos\chi_{1q} \cos\theta_1`,
where `\mathbf{r} = (r_1,r_2,r_3)` represents the vector of the three interspin distances between the three interacting spins,
and `\chi_{1q}` are the angles between the first and `q`-th interspin vector. The three-spin dipolar pathways are now characterized
by an amplitude `\lambda_k`, and by a set of three refocusing times `\mathbf{t}_{\mathrm{ref},k,q}` and three (sub)harmonic factors
`\mathbf{\delta}_{k,q}`.
Due to the higher dimensionality, the three-spin kernel is not constructed as a full matrix but folds the three distance dimensions
into a single one, such that the contribution to the dipolar echo modulation is given directly by
.. math::
V^{(3)}(\mathbf{t}) = \int_0^\infty\int_0^\infty \int_0^\infty \mathrm{d}\mathbf{r} K^{(3)}(\mathbf{t},\mathbf{r})
without the specification of a distance distribution.
Parameters
----------
t : ndarray or list thereof
Experimental time incrementation vectors (time coordinates) `t`, in microseconds. For multi-dimensional experiments,
specify a list ``[t1,...,tD]`` of the time coordinates `\mathbf{t}` along each of the ``D`` different experimental dimensions.
r : ndarray or list thereof
Distance vector `r`, in nanometers. For three-spin interactions, a list ``[r1,r2,r3]`` of three vectors of interspin distances
must be specified.
pathways : list of dictionaries or ``None``, optional
List of dipolar pathways.
For *two-spin dipolar interactions*, each pathway is defined as a dictionary containing the pathway's amplitude :math:`\lambda_k` (``'amp'``),
refocusing time :math:`t_{\mathrm{ref},k}` (``'reftime'``) in microseconds, and (sub)harmonic :math:`\delta_k` (``'harmonic'``).
For example, for a one-dimensional experiment ``{'amp:'lambda, 'reftime':tref, 'harmonic':delta}`` or ``{'amp:'lambda, 'reftime':tref}``. If ``'harmonic'`` is not
specified, it is assumed to be 1 (modulated). For an unmodulated pathway, specify only the amplitude, i.e. ``{'amp':Lambda0}``.
For *multi-dimensional experiments*, the pathway refocusing times \mathbf{\t}_{\mathrm{ref},k}` and harmonics `\mathbf{\delta}_k`
along the different dimensions must be specified as a list, e.g. for a pathway in a two-dimensional experiment
``{'amp:'lambda, 'reftime':[tref1,tref2], 'harmonic':[delta1,delta2]}``
For *three-spin interactions*, each pathway is defined as a dictionary containing the pathway's amplitude :math:`\lambda_k` (``'amp'``),
a tuple of refocusing times :math:`t_{\mathrm{ref},k,q}` (``'reftime'``), and a tuple of (sub)harmonics :math:`\delta_{k,q}` (``'harmonic'``).
For example, for a one-dimensional experiment ``{'amp:'lambda, 'reftime':(tref1,tref2,tref3), 'harmonic':(delta1,delta2,delta3)}``.
If neither ``pathways`` or ``mod`` are specified (or set to ``None``), ``pathways=[{'amp':1,'reftime':0}]`` is used as the default.
mod : scalar or ``None``, optional
Modulation depth for single-pathway dipolar models. This definition is equivalent to ``pathways=[{'amp':1-mod},{'amp':mod,'reftime':0}]``.
If neither ``pathways`` or ``mod`` are specified (or ``None``), ``mod=1`` is used as the default.
bg : callable or array_like or ``None``, optional
Dipolar background basis function. Must be a callable function, accepting a time-vector array as first input and a pathway amplitude
as a second, i.e. ``bg = lambda t,lam: bg_model(t,par,lam)``. If set to ``None``, no background function is included.
For a single-pathway model, the numerical background decay can be passed as an array.
method : string, optional
Numerical method for kernel matrix calculation:
* ``'fresnel'`` - uses Fresnel integrals for the kernel (fast, accurate)
* ``'integral'`` - uses explicit integration function (slow, accurate)
* ``'grid'`` - powder average via explicit grid integration (slow, inaccurate)
The default is ``'fresnel'``. For all three-spin dipolar kernels, the ``'grid'`` method is used automatically.
orisel : callable or ``None``, optional
Probability distribution of possible orientations of the interspin vector to account for orientation selection. Must be
a function taking a value of the angle θ∈[0,π/2] between the interspin vector and the external magnetic field and returning
the corresponding probability density. If specified as ``None`` (by default), a uniform distribution is assumed.
Requires the ``'grid'`` or ``'integral'`` methods.
excbandwidth : scalar, optional
Excitation bandwidth of the pulses in MHz to account for limited excitation bandwidth.
If not specified, an infinite excitation bandwidth is used.
Requires the ``'grid'`` or ``'integral'`` methods.
g : scalar, 2-element array, optional
Electron g-values of the spin centers ``[g1, g2]``. If a single g is specified, ``[g, g]`` is used.
If not specified, g = 2.002319... is used for both spins.
complex : boolean, optional
If enabled, return the complex-valued dipolar kernel, otherwise return the real-valued dipolar kernel.
Disabled by default. Requires the ``'fresnel'`` or ``'grid'`` methods.
integralop : boolean, optional
Return the kernel as an integral operator (i.e ``K = K*dr``) or not (``K``). Usage as an integral operator means that the
matrix operation ``V=K@P`` with a normalized distance distribution (i.e. ``trapz(r,P)==1``) leads to a signal ``V`` with
amplitude ``V(t=0)=1``. The default is ``True``.
gridsize : scalar, optional
Number of points on the grid of powder orientations to be used in the ``'grid'`` kernel calculation method. By default set to 1000 points.
If the expected memory costs of the combined sizes of the ``t`` vector(s), ``r`` vector(s) and grid exceed the ``memorylimit`` value,
a ``MemoryError`` will be raised.
clearcache : boolean, optional
Clear the cached dipolar kernels at the beginning of the function to save memory. Disabled by default.
memorylimit : scalar, optional
Memory limit to be allocated for the dipolar kernel. If the requested kernel exceeds this limit, the
execution will be stopped. The default is 8GB.
tinterp : array_like, optional
Effective dipolar evolution time vector used for interpolation. If specified, the elementary dipolar kernel is computed based on ``tinterp``
and all contributions from the different pathways are interpolated based on it. This results in a significant reduction of the computation time.
The vector ``tinterp`` must cover all possible time shifts of the original ``t`` by the different refocusing times of the dipolar pathways.
Returns
-------
K : ndarray
Dipolar kernel matrix.
Notes
-----
For a multi-pathway DEER [1]_, [2]_, [3]_ signal (e.g, 4-pulse DEER with 2+1 contribution, 5-pulse DEER with
4-pulse DEER residual signal, and more complicated experiments), ``pathways`` contains a list of pathway amplitudes and refocusing times (in microseconds).
The background function specified as ``bg`` is used as basis function, and the actual multipathway background
included into the kernel is computed using :ref:`dipolarbackground`. The background in included in the dipolar
kernel definition [3]_. Optionally, the harmonic (1 = fundamental, 2 = first harmonic, etc.) can be specified for modeling RIDME signals or
subharmonics (1/2 = first subharmonic) can be specified for modeling SIFTER signals.
Examples
--------
To specify a model with an unmodulated offset and a single dipolar pathway that refocuses at time `t=0`, use::
lam = 0.4 # modulation depth
pathways = [
{'amp': [1-lam]},
{'amp': lam, 'reftime': 0}
]
K = dl.dipolarkernel(t,r,pathways=pathways)
A shorthand input syntax equivalent to this input::
lam = 0.4 # modulation
K = dl.dipolarkernel(t,r,mod=lam)
To specify a three-pathway kernel of the 4-pulse DEER experiment that, e.g that includes the 2+1 contribution, use::
tau1 = 0.5 # First interpulse delay (µs)
tau2 = 4.0 # Second interpulse delay (µs)
lam1 = 0.40 # Pathway #1 amplitude
lam2 = 0.10 # Pathway #2 amplitude
lam3 = 0.10 # Pathway #3 amplitude
tref1 = tau1 # Pathway #1 refocusing time
tref2 = tau1+tau2 # Pathway #2 refocusing time
tref3 = 0 # Pathway #3 refocusing time
# Define the list of dipolar pathways
pathways = [
{'amp': 1-lam1-lam2-lam3},
{'amp': lam1, 'reftime': tref1},
{'amp': lam2, 'reftime': tref2},
{'amp': lam3, 'reftime': tref3},
]
K = dl.dipolarkernel(t,r,pathways=pathways)
To specify a dipolar kernel for an experiment on a three-spin system based on a single-pathway model use::
tau1 = 0.5 # First interpulse delay (µs)
lam = 0.40 # Pathway #1 amplitude
# Three dipolar pathways needed, one for each dipolar interaction in the three-spin system
pathways = [
{'amp': 1-3*lam},
{'amp': lam, 'reftime': (tau1,None,None), 'harmonic': (1,0,0)},
{'amp': lam, 'reftime': (None,tau1,None), 'harmonic': (0,1,0)},
{'amp': lam, 'reftime': (None,None,tau1), 'harmonic': (0,0,1)},
]
K = dl.dipolarkernel(t, [r1,r2,r3], pathways=pathways)
To construct a kernel for a three-spin system studied with a two-dimensional experiment, with a single dipolar pathway refocusing at, e.g., `t=(\tau_1,\tau_2)` use::
# Three dipolar pathways needed, one for each dipolar interaction in the three-spin system
pathways = [
{'amp': 1-3*lam},
{'amp': lam, 'reftime': ([tau1,tau2],None,None), 'harmonic': ([1,1],0,0)},
{'amp': lam, 'reftime': (None,[tau1,tau2],None), 'harmonic': (0,[1,1],0)},
{'amp': lam, 'reftime': (None,None,[tau1,tau2]), 'harmonic': (0,0,[1,1])},
]
K = dl.dipolarkernel(t, [r1,r2,r3], pathways=pathways)
References
----------
.. [1] L. Fábregas Ibáñez, M. H. Tessmer, G. Jeschke, and S. Stoll.
Dipolar pathways in dipolar EPR spectroscopy, Phys. Chem. Chem. Phys., 24 2022, 2504-2520
.. [2] L. Fábregas Ibáñez, M. H. Tessmer, G. Jeschke, and S. Stoll.
Dipolar pathways in multi-spin and multi-dimensional dipolar EPR spectroscopy, Phys. Chem. Chem. Phys., 24 2022, 22645-22660
.. [3] L. Fábregas Ibáñez, G. Jeschke, and S. Stoll.
DeerLab: A comprehensive toolbox for analyzing dipolar EPR spectroscopy data, Magn. Reson., 1, 209–224, 2020
.. [4] L. Fábregas Ibáñez, and G. Jeschke
Optimal background treatment in dipolar spectroscopy, Physical Chemistry Chemical Physics, 22, 1855–1868, 2020.
"""
# Clear cache of memoized function is requested
if clearcache:
elementarykernel_twospin.cache_clear()
# If not specified, assume the free-electron g-values
if g is None:
g = [ge, ge]
# Mare sure that r and t are lists
if not isinstance(t,(list)): t = [t]
if not isinstance(r,(list)): r = [r]
D = len(t) # Number of experimental time-coordinates
Q = len(r) # Number of dipolar interactions
# Parse the individual time and distance dimensions
t = [np.expand_dims(np.atleast_1d(t[d]), axis=tuple(np.delete(np.arange(D), d))) for d in range(D)]
for q,r_ in enumerate(r):
r[q] = np.atleast_1d(r_)
if np.any(r[q]<=0):
raise ValueError("All distances must be nonnegative and nonzero.")
# Check that requested kernel does not exceed the memory limit
memory_requirement = 8/1e9 # GB/float
memory_requirement *= np.prod([len(t_) for t_ in t])*len(r[0])
if method=='grid':
memory_requirement = memory_requirement*gridsize
if memory_requirement > memorylimit:
raise MemoryError(f'The requested kernel requires {memory_requirement:.2f}GB, exceeding the current memory limit {memorylimit:.2f}GB.')
# Check validity of the g-values
g = np.atleast_1d(g)
if len(g) == 1:
g = [g, g]
elif len(g) != 2:
raise TypeError('The g-value must be specified as a scalar or a two-element array.')
# Check that the kernel construction method is compatible with requested options
if method=='fresnel':
if excbandwidth != inf:
raise KeyError("Excitation bandwidths can only be specified with the 'grid' or 'integral' methods.")
if orisel is not None:
raise KeyError("Orientation selection weights can only be specified with the 'grid' or 'integral' methods.")
if method=='integral':
if complex:
raise KeyError("Complex-valued kernels cannot be computed by the 'integral' method.")
# Check whether the full pathways or the modulation depth have been passed
pathways_passed = pathways is not None
moddepth_passed = mod is not None
if pathways_passed and moddepth_passed:
raise KeyError("Modulation depth and dipolar pathways cannot be specified simultaneously.")
if moddepth_passed:
# Construct single-pathway kernel if modulation depth is specified
unmod = {'amp': 1 - mod}
singpathway = {'amp': mod, 'reftime': tuple([np.zeros(D)]*Q), 'harmonic': tuple([np.ones(D)]*Q)}
pathways = [unmod,singpathway]
elif not pathways_passed:
# Full modulation if neither pathways or modulation depth are specified
unmod = {'amp': 0}
singpathway = {'amp': 1, 'reftime': tuple([np.zeros(D)]*Q), 'harmonic': tuple([np.ones(D)]*Q)}
pathways = [unmod,singpathway]
# Ensure correct data types of the pathways and its components
#pathways = [{key: np.atleast_1d(value).astype(float) for key,value in pathway.items()} for pathway in pathways]
# Check structure of pathways
for k,pathway in enumerate(pathways):
if not 'amp' in pathway.keys():
raise SyntaxError('All pathways must contain at least an \'amp\' field.')
elif hasattr(pathway['amp'], "__len__"):
if len(np.atleast_1d(pathway['amp']))>1:
raise SyntaxError('A dipolar patwhay can only have one amplitude value.')
else: pathway['amp'] = pathway['amp'].item()
if not 'reftime' in pathway.keys():
pathways[k]['reftime'] = ([None]*len(t))
pathways[k]['harmonic'] = (np.zeros(D))
for key in ['reftime','harmonic']:
if key in pathway.keys():
if not isinstance(pathway[key], tuple):
pathway[key] = tuple([pathway[key]])
pathway[key] = tuple([np.atleast_1d(tref) for tref in pathway[key]])
if 'amp' in pathway.keys() and 'reftime' in pathway.keys() and not 'harmonic' in pathway.keys():
# If harmonic is not defined, append default n=1
pathways[k]['harmonic'] = tuple([np.ones(D)]*len(pathways[k]['reftime']))
for trefq in pathways[k]['reftime']:
if len(trefq)!=len(t):
raise SyntaxError(f"Some pathway's number of refocusing times and harmonics do not match the number of time coordinates.")
# Get unmodulated pathways
unmodulated = [pathways.pop(k) for k,pathway in enumerate(pathways) if np.all(pathway['harmonic']==np.zeros(len(t)))]
# Combine all unmodulated contributions
if unmodulated:
Λ0 = sum([pathway['amp'] for pathway in unmodulated])
else:
Λ0 = 0
if tinterp is not None:
# Construct interpolator, this way elementarykernel_twospin is executed only once independently of how many pathways there are
Kinterpolator = _elementarykernel_twospin_interp(tinterp,r,method,excbandwidth,gridsize,g,orisel,complex)
withinInterpolation = lambda tdip: np.all((np.max(tinterp) >= np.max(tdip)) & (np.min(tinterp) <= np.min(tdip)))
# Define kernel matrix auxiliary functions
def K0_2spin(tdip,q):
#------------------------------------------------------------------------
if tinterp is not None:
if withinInterpolation(tdip):
# Interpolated elementary dipolar kernel
K0 = Kinterpolator[q](tdip)
return K0
# Exact elementary dipolar kernel construction
K0 = elementarykernel_twospin(tdip,r[q],method,excbandwidth,gridsize,g,orisel,complex)
return K0
#------------------------------------------------------------------------
def K0_3spin(tdip):
#------------------------------------------------------------------------
return elementarykernel_threespin(tdip,r,'grid',excbandwidth,gridsize,g,orisel,complex)
#------------------------------------------------------------------------
# Build dipolar kernel matrix, summing over all pathways
K = Λ0
for pathway in pathways:
λ,tref,δ = [pathway['amp'],pathway['reftime'],pathway['harmonic']]
# Set trefs of unmodulated patwhays to an arbitrary numerical value
tref = [[trefq[d] if δqd!=0 else 0 for d,δqd in enumerate(δq)] for δq,trefq in zip(δ,tref)]
# Determine number of spins participating in the pathway
Nspin = np.sum([np.any(δq!=0) for δq in δ])+1
# Two-spin dipolar interactions
if Nspin==2:
# Determine the modulated dipolar interaction
q = int(np.where([np.any(δq!=0) for δq in δ])[0])
# Construc the effective dipolar evolution time for the modulated dipolar interactions
tdip = np.sum(np.array([δ_qd*(t_d-tref_qd) for t_d,δ_qd,tref_qd in zip(t,δ[q],tref[q])],dtype=object), axis=0).astype(float)
# Compute and accumulate the two-spin dipolar pathway contribution to the dipolar kernel
K += λ*K0_2spin(tdip,q)
elif Nspin==3:
# Construct effective dipolar evolution time for all dipolar interactions
tdip = [np.sum(np.array([δ_qd*(t_d-tref_qd) for t_d,δ_qd,tref_qd in zip(t,δq,trefq)],dtype=object), axis=0).astype(float) for δq,trefq in zip(δ,tref)]
K += λ*K0_3spin(tdip)
# Multiply by background if given
if bg is not None:
if type(bg) is types.LambdaType:
B = dipolarbackground(t,pathways,bg)
else:
B = np.atleast_1d(bg)
K *= B[:,np.newaxis]
# Include Δr factor for integration
for r_q in r:
if integralop and len(r_q)>1:
# Vectorized matrix form of trapezoidal integration method
dr = np.zeros_like(r_q)
dr[0] = r_q[1] - r_q[0]
dr[-1] = r_q[-1] - r_q[-2]
dr[1:-1] = r_q[2:] - r_q[0:-2]
dr = dr/2
K *= dr
return K
#==============================================================================
@cached(max_size=100)
def _elementarykernel_twospin_interp(tinterp,r,method,excbandwidth,gridsize,g,orisel,complex):
"""
Construct interpolator, this way elementarykernel_twospin is executed only once independently of how many pathways there are
Cached for performance reasons, interpolation is slow.
"""
Kinterpolator = [interp1d(tinterp,elementarykernel_twospin(tinterp,r_q,method,excbandwidth,gridsize,g,orisel,complex),axis=0,kind='cubic') for r_q in r]
return Kinterpolator
#==============================================================================
# TWO-SPIN ELEMENTARY DIPOLAR KERNEL
#==============================================================================
def _echomodulation(ωr,tdip,cosθ,ωex,complex):
#==============================================================================
"Spin echo modulation due to dipolar coupling(s)"
# Differentiate between complex and real valued cases for a speedup
if complex:
echomod = np.exp(-1j*ωr*tdip*(1 - 3*cosθ**2))
else:
echomod = np.cos(ωr*abs(tdip)*(1 - 3*cosθ**2))
# If given, include limited excitation bandwidth
if not np.isinf(ωex):
echomod *= np.exp(-(ωr*(1 - 3*cosθ**2))**2/ωex**2)
return echomod
#==============================================================================
@cached(max_size=100)
def elementarykernel_twospin(tdip,r,method,ωex,gridsize,g,Pθ,complex):
#==============================================================================
"Calculates the elementary two-spin dipolar interaction kernel (cached for speed)"
# Work with vectors
r = np.atleast_1d(r)
# Dipolar frequencies
ωr = (μ0/2)*μB**2*g[0]*g[1]/h*1e21/(r**3) # rad μs^-1
# Orientation selection
if method != 'fresnel':
orientationselection = Pθ is not None
if orientationselection:
# Ensure zero-derivatives at [0,π/2]
θ = np.linspace(0,π/2,50) # rad
Pθ_ = make_interp_spline(θ, Pθ(θ),bc_type="clamped")
# Ensure normalization of probability density function (∫P(cosθ)dcosθ=1)
Pθnorm,_ = quad(lambda cosθ: Pθ_(np.arccos(cosθ)),0,1,limit=1000)
Pθ = lambda θ: Pθ_(θ)/Pθnorm
def elementarykernel_fresnel(tdip):
#------------------------------------------------------------------------
"""Calculate kernel using Fresnel integrals (fast and accurate)"""
# Calculation using Fresnel integrals
if complex:
ɸ = np.multiply.outer(tdip,ωr)
κ = np.lib.scimath.sqrt(6*ɸ/π)
S, C = fresnel(κ)
K0 = np.exp(-1j*ɸ)*(C + 1j*S)
else:
ɸ = np.multiply.outer(np.abs(tdip),ωr)
κ = np.lib.scimath.sqrt(6*ɸ/π)
S, C = fresnel(κ)
K0 = C*np.cos(ɸ) + S*np.sin(ɸ)
# Supress divide by 0 warning
with warnings.catch_warnings():
warnings.simplefilter("ignore")
K0 = K0/κ
K0 = np.where(ɸ==0,1,K0)
return K0
#------------------------------------------------------------------------
def elementarykernel_grid(tdip,ωex,gridsize,Pθ):
#------------------------------------------------------------------------
"""Calculate kernel using grid-based powder integration (converges very slowly with gridsize)"""
# Orientational grid
cosθ = np.linspace(0,1,int(gridsize))
D = len(tdip.shape)
dims = np.arange(D + 2)
# Expand dimensions of all variables on a multi-dimensional grid
tdip_ = np.expand_dims(tdip, axis=tuple(np.delete(dims, range(D))))
ωr_ = np.expand_dims(ωr, axis=tuple(np.delete(dims, D)))
cosθ_ = np.expand_dims(cosθ, axis=tuple(np.delete(dims, D + 1)))
# Integrate over the grid of echo modulations
if orientationselection:
# With orientation distribution Pθ
K0 = np.dot(_echomodulation(ωr_,tdip_,cosθ_,ωex,complex),Pθ(np.arccos(cosθ)))/gridsize
else:
# Without orientation selection
K0 = np.sum(_echomodulation(ωr_,tdip_,cosθ_,ωex,complex),axis=-1)/gridsize
return K0
#------------------------------------------------------------------------
def elementarykernel_integral(tdip,ωex,Pθ):
#------------------------------------------------------------------------
"""Calculate kernel using explicit numerical integration """
K0 = np.zeros((np.size(tdip),np.size(ωr)))
for n,ωr_ in enumerate(ωr):
def integrand(cosθ):
#------------------------------------------------------------------------
integ = _echomodulation(ωr_,tdip,cosθ,ωex,complex)
# If given, include orientation selection
if orientationselection:
integ = integ*Pθ(np.arccos(cosθ))
return integ
#------------------------------------------------------------------------
K0[:,n] = quad_vec(integrand,0,1,limit=1000)[0].squeeze()
return K0
#------------------------------------------------------------------------
if method=='fresnel':
K0 = elementarykernel_fresnel(tdip)
elif method=='integral':
K0 = elementarykernel_integral(tdip,ωex,Pθ)
elif method=='grid':
K0 = elementarykernel_grid(tdip,ωex,gridsize,Pθ)
return K0
#==============================================================================
#==============================================================================
# THREE-SPIN ELEMENTARY DIPOLAR KERNEL
#==============================================================================
def _echomodulation_threespin(tdips,ωrs,rs,θ1,φ1,weights,complex):
#==============================================================================
"Spin echo modulation due to dipolar coupling(s)"
# Orientation of the first interspin vector relative to the magnetic field
cosθ1 = np.cos(θ1)
sinθ1 = np.sin(θ1)
cosφ1 = np.cos(φ1)
# Law of cosines
r1,r2,r3 = rs
Δθ12 = np.arccos((r1**2 + r2**2 - r3**2)/(2*r1*r2))
Δθ13 = np.arccos((r1**2 + r3**2 - r2**2)/(2*r1*r3))
sinΔθ12, cosΔθ12 = np.sin(Δθ12), np.cos(Δθ12)
sinΔθ13, cosΔθ13 = np.sin(Δθ13), np.cos(Δθ13)
# Compute orientations of the other two interspin vectors relative to the magnetic field
cosθ2 = sinΔθ12*cosφ1*sinθ1 + cosΔθ12*cosθ1
cosθ3 = sinΔθ13*cosφ1*sinθ1 + cosΔθ13*cosθ1
# Precompute partial broadcasting for efficiency
ωdip1_tdip1,ωdip2_tdip2,ωdip3_tdip3 = [ωdip_q*tdip_q for ωdip_q,tdip_q in zip(ωrs,tdips)]
# Differentiate between complex and real valued cases for a speedup
if complex:
echomod = ne.evaluate('exp(-1j*ωdip1_tdip1*(1 - 3*cosθ1**2) )* \
exp(-1j*ωdip2_tdip2*(1 - 3*cosθ2**2) )* \
exp(-1j*ωdip3_tdip3*(1 - 3*cosθ3**2) )')
else:
echomod = ne.evaluate('cos(ωdip1_tdip1*(1 - 3*cosθ1**2) )* \
cos(ωdip2_tdip2*(1 - 3*cosθ2**2) )* \
cos(ωdip3_tdip3*(1 - 3*cosθ3**2) )')
# Orientation weighting
echomod = echomod*weights
return echomod
#==============================================================================
def elementarykernel_threespin(tdips,rs,method,ωex,gridsize,g,Pθ,complex):
#==============================================================================
"Calculates the elementary three-spin dipolar interaction kernel"
# Work with vectors
rs = np.atleast_1d(*rs)
# Dipolar frequencies
ωrs = [(μ0/2)*μB**2*g[0]*g[1]/h*1e21/(r_q**3) for r_q in rs] # rad μs^-1
# Orientation selection
orientationselection = Pθ is not None
if orientationselection:
# Ensure zero-derivatives at [0,π/2]
θ = np.linspace(0,π/2,50) # rad
Pθ_ = make_interp_spline(θ, Pθ(θ),bc_type="clamped")
# Ensure normalization of probability density function (∫P(cosθ)dcosθ=1)
Pθnorm,_ = quad(lambda cosθ: Pθ_(np.arccos(cosθ)),0,1,limit=1000)
Pθ = lambda θ: Pθ_(θ)/Pθnorm
def elementarykernel_threespin_grid(tsdip,gridsize,Pθ):
#------------------------------------------------------------------------
"""Calculate kernel using grid-based powder integration (converges very slowly with gridsize)"""
# Orientational grid
φ,θ,weights = sophegrid(octants=4,maxphi=2*np.pi,size=int(np.floor(1/2*(np.sqrt(2*gridsize - 1) +1 ))))
D = len(tsdip[0].shape)
dims = np.arange(D + 2)
# Expand dimensions of all variables on a multi-dimensional grid
tsdip_ = [np.expand_dims(tdip, axis=tuple(np.delete(dims, range(D)))) for tdip in tsdip]
ωr_ = [np.expand_dims(ωr_q, axis=tuple(np.delete(dims, D))) for ωr_q in ωrs]
rs_ = [np.expand_dims(r_q, axis=tuple(np.delete(dims, D))) for r_q in rs]
θ_ = np.expand_dims(θ, axis=tuple(np.delete(dims, D + 1)))
φ_ = np.expand_dims(φ, axis=tuple(np.delete(dims, D + 1)))
weights_ = np.expand_dims(weights, axis=tuple(np.delete(dims, D + 1)))
# Integrate over the grid of echo modulations
if orientationselection:
# With orientation distribution Pθ
K0 = np.dot(_echomodulation_threespin(tsdip_,ωr_,rs_,θ_,φ_,weights_,complex),Pθ(θ))
else:
# Without orientation selection
K0 = np.sum(_echomodulation_threespin(tsdip_,ωr_,rs_,θ_,φ_,weights_,complex),axis=-1)
return K0
#------------------------------------------------------------------------
if method=='grid':
K0 = elementarykernel_threespin_grid(tdips,gridsize,Pθ)
return K0
#==============================================================================