Source code for deerlab.dipolarkernel

# dipolarkernel.py - Dipolar kernel operator
# -----------------------------------------------
# This file is a part of DeerLab. License is MIT (see LICENSE.md).
# Copyright(c) 2019-2023: Luis Fabregas, Stefan Stoll and other contributors.

# Numpy + SciPy
import numpy as np
from numpy import inf
from scipy.integrate import quad_vec, quad
from scipy.special import fresnel
from scipy.interpolate import make_interp_spline,interp1d
# Other packages
import numexpr as ne
import types
import warnings
from memoization import cached
# DeerLab dependencies
from deerlab.dipolarbackground import dipolarbackground
from deerlab.utils import sophegrid
from deerlab.constants import *

[docs] def dipolarkernel(t, r, *, pathways=None, mod=None, bg=None, method='fresnel', excbandwidth=inf, orisel=None, g=None, integralop=True, gridsize=1000, complex=False, clearcache=False, memorylimit=8, tinterp=None): #=================================================================================================== r""" Compute the (multi-pathway) dipolar kernel operator. The function computes the two-spin interaction dipolar kernel which accounts for the structure and shape of the echo modulation due to intra- and inter-molecular dipolar interactions over a sample. The dipolar kernel is constructed from the contributions arising from different dipolar pathways [1]_ during a pulse sequence. The two-spin dipolar kernel reads: .. math:: K(\mathbf{t},r) = \Lambda_0 + \sum_k \lambda_k \int_0^\pi \mathrm{d}\theta \sin(\theta) \exp\Bigg(-i \frac{D\mathbf{\delta}_k (\mathbf{t} - \mathbf{t}_{\mathrm{ref},k})}{r^3}(1-3\cos(\theta)^2) \Bigg) \prod_k B(\lambda_k, \mathbf{\delta}_k (\mathbf{t} - \mathbf{t}_{\mathrm{ref},k})) where `\mathbf{t}=(t_1,\dots,t_D)` are the experimental time incrementation vectors of a `D`-dimensional experiment and `r` represents the interspin distance. The dipolar pathways are characterized by their amplitudes `\lambda_k`, their refocusing times `\mathbf{t}_{\mathrm{ref},k}`, and their (sub)harmonic factors `\mathbf{\delta}_k`. The constant factor `\Lambda_0` represents the total amplitude of all unmodulated contributions. The function `B(\lambda,t)` represents the background function due to the intermolecular contributions. The dipolar signal due to two-spin contributions given a distance distribution `P(r)` is given by the linear Fredholm integral .. math:: V(\mathbf{t}) = \int_0^\infty \mathrm{d}r P(r) K(\mathbf{t},r) The function can also compute three-spin interaction dipolar kernels that account for the additional the structure and shape of the echo modulation in multi-spin systems [2]_. The three-spin dipolar kernel is constructed from the contributions arising from the combinations of different pair dipolar pathways [2]_ during a pulse sequence. The three-spin dipolar kernel reads: .. math:: K^{(3)}(\mathbf{t},\mathbf{r}) = & \Lambda_0 + \sum_k \lambda_k \frac{1}{2\pi} \int_0^{2\pi}\mathrm{d}\varphi \int_0^{\pi}\mathrm{d}\theta_1 \sin(\theta_1) \exp\Bigg(-i \sum_q^3 \frac{D \delta_{k,q}(\mathbf{t} - \mathbf{t}_{\mathrm{ref},k,q})}{r_q^3} (1 - 3\cos(\theta_{1q})^2 \Bigg) \prod_k\prod_q^3 B(\lambda_k, \mathbf{\delta}_{k,q} (\mathbf{t} - \mathbf{t}_{\mathrm{ref},k,q})) with `\cos(\theta_{1q}) = \sin\chi_{1q} \cos\varphi \sin\theta_1 + \cos\chi_{1q} \cos\theta_1`, where `\mathbf{r} = (r_1,r_2,r_3)` represents the vector of the three interspin distances between the three interacting spins, and `\chi_{1q}` are the angles between the first and `q`-th interspin vector. The three-spin dipolar pathways are now characterized by an amplitude `\lambda_k`, and by a set of three refocusing times `\mathbf{t}_{\mathrm{ref},k,q}` and three (sub)harmonic factors `\mathbf{\delta}_{k,q}`. Due to the higher dimensionality, the three-spin kernel is not constructed as a full matrix but folds the three distance dimensions into a single one, such that the contribution to the dipolar echo modulation is given directly by .. math:: V^{(3)}(\mathbf{t}) = \int_0^\infty\int_0^\infty \int_0^\infty \mathrm{d}\mathbf{r} K^{(3)}(\mathbf{t},\mathbf{r}) without the specification of a distance distribution. Parameters ---------- t : ndarray or list thereof Experimental time incrementation vectors (time coordinates) `t`, in microseconds. For multi-dimensional experiments, specify a list ``[t1,...,tD]`` of the time coordinates `\mathbf{t}` along each of the ``D`` different experimental dimensions. r : ndarray or list thereof Distance vector `r`, in nanometers. For three-spin interactions, a list ``[r1,r2,r3]`` of three vectors of interspin distances must be specified. pathways : list of dictionaries or ``None``, optional List of dipolar pathways. For *two-spin dipolar interactions*, each pathway is defined as a dictionary containing the pathway's amplitude :math:`\lambda_k` (``'amp'``), refocusing time :math:`t_{\mathrm{ref},k}` (``'reftime'``) in microseconds, and (sub)harmonic :math:`\delta_k` (``'harmonic'``). For example, for a one-dimensional experiment ``{'amp:'lambda, 'reftime':tref, 'harmonic':delta}`` or ``{'amp:'lambda, 'reftime':tref}``. If ``'harmonic'`` is not specified, it is assumed to be 1 (modulated). For an unmodulated pathway, specify only the amplitude, i.e. ``{'amp':Lambda0}``. For *multi-dimensional experiments*, the pathway refocusing times \mathbf{\t}_{\mathrm{ref},k}` and harmonics `\mathbf{\delta}_k` along the different dimensions must be specified as a list, e.g. for a pathway in a two-dimensional experiment ``{'amp:'lambda, 'reftime':[tref1,tref2], 'harmonic':[delta1,delta2]}`` For *three-spin interactions*, each pathway is defined as a dictionary containing the pathway's amplitude :math:`\lambda_k` (``'amp'``), a tuple of refocusing times :math:`t_{\mathrm{ref},k,q}` (``'reftime'``), and a tuple of (sub)harmonics :math:`\delta_{k,q}` (``'harmonic'``). For example, for a one-dimensional experiment ``{'amp:'lambda, 'reftime':(tref1,tref2,tref3), 'harmonic':(delta1,delta2,delta3)}``. If neither ``pathways`` or ``mod`` are specified (or set to ``None``), ``pathways=[{'amp':1,'reftime':0}]`` is used as the default. mod : scalar or ``None``, optional Modulation depth for single-pathway dipolar models. This definition is equivalent to ``pathways=[{'amp':1-mod},{'amp':mod,'reftime':0}]``. If neither ``pathways`` or ``mod`` are specified (or ``None``), ``mod=1`` is used as the default. bg : callable or array_like or ``None``, optional Dipolar background basis function. Must be a callable function, accepting a time-vector array as first input and a pathway amplitude as a second, i.e. ``bg = lambda t,lam: bg_model(t,par,lam)``. If set to ``None``, no background function is included. For a single-pathway model, the numerical background decay can be passed as an array. method : string, optional Numerical method for kernel matrix calculation: * ``'fresnel'`` - uses Fresnel integrals for the kernel (fast, accurate) * ``'integral'`` - uses explicit integration function (slow, accurate) * ``'grid'`` - powder average via explicit grid integration (slow, inaccurate) The default is ``'fresnel'``. For all three-spin dipolar kernels, the ``'grid'`` method is used automatically. orisel : callable or ``None``, optional Probability distribution of possible orientations of the interspin vector to account for orientation selection. Must be a function taking a value of the angle θ∈[0,π/2] between the interspin vector and the external magnetic field and returning the corresponding probability density. If specified as ``None`` (by default), a uniform distribution is assumed. Requires the ``'grid'`` or ``'integral'`` methods. excbandwidth : scalar, optional Excitation bandwidth of the pulses in MHz to account for limited excitation bandwidth. If not specified, an infinite excitation bandwidth is used. Requires the ``'grid'`` or ``'integral'`` methods. g : scalar, 2-element array, optional Electron g-values of the spin centers ``[g1, g2]``. If a single g is specified, ``[g, g]`` is used. If not specified, g = 2.002319... is used for both spins. complex : boolean, optional If enabled, return the complex-valued dipolar kernel, otherwise return the real-valued dipolar kernel. Disabled by default. Requires the ``'fresnel'`` or ``'grid'`` methods. integralop : boolean, optional Return the kernel as an integral operator (i.e ``K = K*dr``) or not (``K``). Usage as an integral operator means that the matrix operation ``V=K@P`` with a normalized distance distribution (i.e. ``trapz(r,P)==1``) leads to a signal ``V`` with amplitude ``V(t=0)=1``. The default is ``True``. gridsize : scalar, optional Number of points on the grid of powder orientations to be used in the ``'grid'`` kernel calculation method. By default set to 1000 points. If the expected memory costs of the combined sizes of the ``t`` vector(s), ``r`` vector(s) and grid exceed the ``memorylimit`` value, a ``MemoryError`` will be raised. clearcache : boolean, optional Clear the cached dipolar kernels at the beginning of the function to save memory. Disabled by default. memorylimit : scalar, optional Memory limit to be allocated for the dipolar kernel. If the requested kernel exceeds this limit, the execution will be stopped. The default is 8GB. tinterp : array_like, optional Effective dipolar evolution time vector used for interpolation. If specified, the elementary dipolar kernel is computed based on ``tinterp`` and all contributions from the different pathways are interpolated based on it. This results in a significant reduction of the computation time. The vector ``tinterp`` must cover all possible time shifts of the original ``t`` by the different refocusing times of the dipolar pathways. Returns ------- K : ndarray Dipolar kernel matrix. Notes ----- For a multi-pathway DEER [1]_, [2]_, [3]_ signal (e.g, 4-pulse DEER with 2+1 contribution, 5-pulse DEER with 4-pulse DEER residual signal, and more complicated experiments), ``pathways`` contains a list of pathway amplitudes and refocusing times (in microseconds). The background function specified as ``bg`` is used as basis function, and the actual multipathway background included into the kernel is computed using :ref:`dipolarbackground`. The background in included in the dipolar kernel definition [3]_. Optionally, the harmonic (1 = fundamental, 2 = first harmonic, etc.) can be specified for modeling RIDME signals or subharmonics (1/2 = first subharmonic) can be specified for modeling SIFTER signals. Examples -------- To specify a model with an unmodulated offset and a single dipolar pathway that refocuses at time `t=0`, use:: lam = 0.4 # modulation depth pathways = [ {'amp': [1-lam]}, {'amp': lam, 'reftime': 0} ] K = dl.dipolarkernel(t,r,pathways=pathways) A shorthand input syntax equivalent to this input:: lam = 0.4 # modulation K = dl.dipolarkernel(t,r,mod=lam) To specify a three-pathway kernel of the 4-pulse DEER experiment that, e.g that includes the 2+1 contribution, use:: tau1 = 0.5 # First interpulse delay (µs) tau2 = 4.0 # Second interpulse delay (µs) lam1 = 0.40 # Pathway #1 amplitude lam2 = 0.10 # Pathway #2 amplitude lam3 = 0.10 # Pathway #3 amplitude tref1 = tau1 # Pathway #1 refocusing time tref2 = tau1+tau2 # Pathway #2 refocusing time tref3 = 0 # Pathway #3 refocusing time # Define the list of dipolar pathways pathways = [ {'amp': 1-lam1-lam2-lam3}, {'amp': lam1, 'reftime': tref1}, {'amp': lam2, 'reftime': tref2}, {'amp': lam3, 'reftime': tref3}, ] K = dl.dipolarkernel(t,r,pathways=pathways) To specify a dipolar kernel for an experiment on a three-spin system based on a single-pathway model use:: tau1 = 0.5 # First interpulse delay (µs) lam = 0.40 # Pathway #1 amplitude # Three dipolar pathways needed, one for each dipolar interaction in the three-spin system pathways = [ {'amp': 1-3*lam}, {'amp': lam, 'reftime': (tau1,None,None), 'harmonic': (1,0,0)}, {'amp': lam, 'reftime': (None,tau1,None), 'harmonic': (0,1,0)}, {'amp': lam, 'reftime': (None,None,tau1), 'harmonic': (0,0,1)}, ] K = dl.dipolarkernel(t, [r1,r2,r3], pathways=pathways) To construct a kernel for a three-spin system studied with a two-dimensional experiment, with a single dipolar pathway refocusing at, e.g., `t=(\tau_1,\tau_2)` use:: # Three dipolar pathways needed, one for each dipolar interaction in the three-spin system pathways = [ {'amp': 1-3*lam}, {'amp': lam, 'reftime': ([tau1,tau2],None,None), 'harmonic': ([1,1],0,0)}, {'amp': lam, 'reftime': (None,[tau1,tau2],None), 'harmonic': (0,[1,1],0)}, {'amp': lam, 'reftime': (None,None,[tau1,tau2]), 'harmonic': (0,0,[1,1])}, ] K = dl.dipolarkernel(t, [r1,r2,r3], pathways=pathways) References ---------- .. [1] L. Fábregas Ibáñez, M. H. Tessmer, G. Jeschke, and S. Stoll. Dipolar pathways in dipolar EPR spectroscopy, Phys. Chem. Chem. Phys., 24 2022, 2504-2520 .. [2] L. Fábregas Ibáñez, M. H. Tessmer, G. Jeschke, and S. Stoll. Dipolar pathways in multi-spin and multi-dimensional dipolar EPR spectroscopy, Phys. Chem. Chem. Phys., 24 2022, 22645-22660 .. [3] L. Fábregas Ibáñez, G. Jeschke, and S. Stoll. DeerLab: A comprehensive toolbox for analyzing dipolar EPR spectroscopy data, Magn. Reson., 1, 209–224, 2020 .. [4] L. Fábregas Ibáñez, and G. Jeschke Optimal background treatment in dipolar spectroscopy, Physical Chemistry Chemical Physics, 22, 1855–1868, 2020. """ # Clear cache of memoized function is requested if clearcache: elementarykernel_twospin.cache_clear() # If not specified, assume the free-electron g-values if g is None: g = [ge, ge] # Mare sure that r and t are lists if not isinstance(t,(list)): t = [t] if not isinstance(r,(list)): r = [r] D = len(t) # Number of experimental time-coordinates Q = len(r) # Number of dipolar interactions # Parse the individual time and distance dimensions t = [np.expand_dims(np.atleast_1d(t[d]), axis=tuple(np.delete(np.arange(D), d))) for d in range(D)] for q,r_ in enumerate(r): r[q] = np.atleast_1d(r_) if np.any(r[q]<=0): raise ValueError("All distances must be nonnegative and nonzero.") # Check that requested kernel does not exceed the memory limit memory_requirement = 8/1e9 # GB/float memory_requirement *= np.prod([len(t_) for t_ in t])*len(r[0]) if method=='grid': memory_requirement = memory_requirement*gridsize if memory_requirement > memorylimit: raise MemoryError(f'The requested kernel requires {memory_requirement:.2f}GB, exceeding the current memory limit {memorylimit:.2f}GB.') # Check validity of the g-values g = np.atleast_1d(g) if len(g) == 1: g = [g, g] elif len(g) != 2: raise TypeError('The g-value must be specified as a scalar or a two-element array.') # Check that the kernel construction method is compatible with requested options if method=='fresnel': if excbandwidth != inf: raise KeyError("Excitation bandwidths can only be specified with the 'grid' or 'integral' methods.") if orisel is not None: raise KeyError("Orientation selection weights can only be specified with the 'grid' or 'integral' methods.") if method=='integral': if complex: raise KeyError("Complex-valued kernels cannot be computed by the 'integral' method.") # Check whether the full pathways or the modulation depth have been passed pathways_passed = pathways is not None moddepth_passed = mod is not None if pathways_passed and moddepth_passed: raise KeyError("Modulation depth and dipolar pathways cannot be specified simultaneously.") if moddepth_passed: # Construct single-pathway kernel if modulation depth is specified unmod = {'amp': 1 - mod} singpathway = {'amp': mod, 'reftime': tuple([np.zeros(D)]*Q), 'harmonic': tuple([np.ones(D)]*Q)} pathways = [unmod,singpathway] elif not pathways_passed: # Full modulation if neither pathways or modulation depth are specified unmod = {'amp': 0} singpathway = {'amp': 1, 'reftime': tuple([np.zeros(D)]*Q), 'harmonic': tuple([np.ones(D)]*Q)} pathways = [unmod,singpathway] # Ensure correct data types of the pathways and its components #pathways = [{key: np.atleast_1d(value).astype(float) for key,value in pathway.items()} for pathway in pathways] # Check structure of pathways for k,pathway in enumerate(pathways): if not 'amp' in pathway.keys(): raise SyntaxError('All pathways must contain at least an \'amp\' field.') elif hasattr(pathway['amp'], "__len__"): if len(np.atleast_1d(pathway['amp']))>1: raise SyntaxError('A dipolar patwhay can only have one amplitude value.') else: pathway['amp'] = pathway['amp'].item() if not 'reftime' in pathway.keys(): pathways[k]['reftime'] = ([None]*len(t)) pathways[k]['harmonic'] = (np.zeros(D)) for key in ['reftime','harmonic']: if key in pathway.keys(): if not isinstance(pathway[key], tuple): pathway[key] = tuple([pathway[key]]) pathway[key] = tuple([np.atleast_1d(tref) for tref in pathway[key]]) if 'amp' in pathway.keys() and 'reftime' in pathway.keys() and not 'harmonic' in pathway.keys(): # If harmonic is not defined, append default n=1 pathways[k]['harmonic'] = tuple([np.ones(D)]*len(pathways[k]['reftime'])) for trefq in pathways[k]['reftime']: if len(trefq)!=len(t): raise SyntaxError(f"Some pathway's number of refocusing times and harmonics do not match the number of time coordinates.") # Get unmodulated pathways unmodulated = [pathways.pop(k) for k,pathway in enumerate(pathways) if np.all(pathway['harmonic']==np.zeros(len(t)))] # Combine all unmodulated contributions if unmodulated: Λ0 = sum([pathway['amp'] for pathway in unmodulated]) else: Λ0 = 0 if tinterp is not None: # Construct interpolator, this way elementarykernel_twospin is executed only once independently of how many pathways there are Kinterpolator = _elementarykernel_twospin_interp(tinterp,r,method,excbandwidth,gridsize,g,orisel,complex) withinInterpolation = lambda tdip: np.all((np.max(tinterp) >= np.max(tdip)) & (np.min(tinterp) <= np.min(tdip))) # Define kernel matrix auxiliary functions def K0_2spin(tdip,q): #------------------------------------------------------------------------ if tinterp is not None: if withinInterpolation(tdip): # Interpolated elementary dipolar kernel K0 = Kinterpolator[q](tdip) return K0 # Exact elementary dipolar kernel construction K0 = elementarykernel_twospin(tdip,r[q],method,excbandwidth,gridsize,g,orisel,complex) return K0 #------------------------------------------------------------------------ def K0_3spin(tdip): #------------------------------------------------------------------------ return elementarykernel_threespin(tdip,r,'grid',excbandwidth,gridsize,g,orisel,complex) #------------------------------------------------------------------------ # Build dipolar kernel matrix, summing over all pathways K = Λ0 for pathway in pathways: λ,tref,δ = [pathway['amp'],pathway['reftime'],pathway['harmonic']] # Set trefs of unmodulated patwhays to an arbitrary numerical value tref = [[trefq[d] if δqd!=0 else 0 for d,δqd in enumerate(δq)] for δq,trefq in zip(δ,tref)] # Determine number of spins participating in the pathway Nspin = np.sum([np.any(δq!=0) for δq in δ])+1 # Two-spin dipolar interactions if Nspin==2: # Determine the modulated dipolar interaction q = int(np.where([np.any(δq!=0) for δq in δ])[0]) # Construc the effective dipolar evolution time for the modulated dipolar interactions tdip = np.sum(np.array([δ_qd*(t_d-tref_qd) for t_d,δ_qd,tref_qd in zip(t,δ[q],tref[q])],dtype=object), axis=0).astype(float) # Compute and accumulate the two-spin dipolar pathway contribution to the dipolar kernel K += λ*K0_2spin(tdip,q) elif Nspin==3: # Construct effective dipolar evolution time for all dipolar interactions tdip = [np.sum(np.array([δ_qd*(t_d-tref_qd) for t_d,δ_qd,tref_qd in zip(t,δq,trefq)],dtype=object), axis=0).astype(float) for δq,trefq in zip(δ,tref)] K += λ*K0_3spin(tdip) # Multiply by background if given if bg is not None: if type(bg) is types.LambdaType: B = dipolarbackground(t,pathways,bg) else: B = np.atleast_1d(bg) K *= B[:,np.newaxis] # Include Δr factor for integration for r_q in r: if integralop and len(r_q)>1: # Vectorized matrix form of trapezoidal integration method dr = np.zeros_like(r_q) dr[0] = r_q[1] - r_q[0] dr[-1] = r_q[-1] - r_q[-2] dr[1:-1] = r_q[2:] - r_q[0:-2] dr = dr/2 K *= dr return K
#============================================================================== @cached(max_size=100) def _elementarykernel_twospin_interp(tinterp,r,method,excbandwidth,gridsize,g,orisel,complex): """ Construct interpolator, this way elementarykernel_twospin is executed only once independently of how many pathways there are Cached for performance reasons, interpolation is slow. """ Kinterpolator = [interp1d(tinterp,elementarykernel_twospin(tinterp,r_q,method,excbandwidth,gridsize,g,orisel,complex),axis=0,kind='cubic') for r_q in r] return Kinterpolator #============================================================================== # TWO-SPIN ELEMENTARY DIPOLAR KERNEL #============================================================================== def _echomodulation(ωr,tdip,cosθ,ωex,complex): #============================================================================== "Spin echo modulation due to dipolar coupling(s)" # Differentiate between complex and real valued cases for a speedup if complex: echomod = np.exp(-1j*ωr*tdip*(1 - 3*cosθ**2)) else: echomod = np.cos(ωr*abs(tdip)*(1 - 3*cosθ**2)) # If given, include limited excitation bandwidth if not np.isinf(ωex): echomod *= np.exp(-(ωr*(1 - 3*cosθ**2))**2/ωex**2) return echomod #============================================================================== @cached(max_size=100) def elementarykernel_twospin(tdip,r,method,ωex,gridsize,g,,complex): #============================================================================== "Calculates the elementary two-spin dipolar interaction kernel (cached for speed)" # Work with vectors r = np.atleast_1d(r) # Dipolar frequencies ωr = (μ0/2)*μB**2*g[0]*g[1]/h*1e21/(r**3) # rad μs^-1 # Orientation selection if method != 'fresnel': orientationselection = is not None if orientationselection: # Ensure zero-derivatives at [0,π/2] θ = np.linspace(0,π/2,50) # rad Pθ_ = make_interp_spline(θ, (θ),bc_type="clamped") # Ensure normalization of probability density function (∫P(cosθ)dcosθ=1) Pθnorm,_ = quad(lambda cosθ: Pθ_(np.arccos(cosθ)),0,1,limit=1000) = lambda θ: Pθ_(θ)/Pθnorm def elementarykernel_fresnel(tdip): #------------------------------------------------------------------------ """Calculate kernel using Fresnel integrals (fast and accurate)""" # Calculation using Fresnel integrals if complex: ɸ = np.multiply.outer(tdip,ωr) κ = np.lib.scimath.sqrt(6*ɸ/π) S, C = fresnel(κ) K0 = np.exp(-1j*ɸ)*(C + 1j*S) else: ɸ = np.multiply.outer(np.abs(tdip),ωr) κ = np.lib.scimath.sqrt(6*ɸ/π) S, C = fresnel(κ) K0 = C*np.cos(ɸ) + S*np.sin(ɸ) # Supress divide by 0 warning with warnings.catch_warnings(): warnings.simplefilter("ignore") K0 = K0/κ K0 = np.where(ɸ==0,1,K0) return K0 #------------------------------------------------------------------------ def elementarykernel_grid(tdip,ωex,gridsize,): #------------------------------------------------------------------------ """Calculate kernel using grid-based powder integration (converges very slowly with gridsize)""" # Orientational grid cosθ = np.linspace(0,1,int(gridsize)) D = len(tdip.shape) dims = np.arange(D + 2) # Expand dimensions of all variables on a multi-dimensional grid tdip_ = np.expand_dims(tdip, axis=tuple(np.delete(dims, range(D)))) ωr_ = np.expand_dims(ωr, axis=tuple(np.delete(dims, D))) cosθ_ = np.expand_dims(cosθ, axis=tuple(np.delete(dims, D + 1))) # Integrate over the grid of echo modulations if orientationselection: # With orientation distribution Pθ K0 = np.dot(_echomodulation(ωr_,tdip_,cosθ_,ωex,complex),(np.arccos(cosθ)))/gridsize else: # Without orientation selection K0 = np.sum(_echomodulation(ωr_,tdip_,cosθ_,ωex,complex),axis=-1)/gridsize return K0 #------------------------------------------------------------------------ def elementarykernel_integral(tdip,ωex,): #------------------------------------------------------------------------ """Calculate kernel using explicit numerical integration """ K0 = np.zeros((np.size(tdip),np.size(ωr))) for n,ωr_ in enumerate(ωr): def integrand(cosθ): #------------------------------------------------------------------------ integ = _echomodulation(ωr_,tdip,cosθ,ωex,complex) # If given, include orientation selection if orientationselection: integ = integ*(np.arccos(cosθ)) return integ #------------------------------------------------------------------------ K0[:,n] = quad_vec(integrand,0,1,limit=1000)[0].squeeze() return K0 #------------------------------------------------------------------------ if method=='fresnel': K0 = elementarykernel_fresnel(tdip) elif method=='integral': K0 = elementarykernel_integral(tdip,ωex,) elif method=='grid': K0 = elementarykernel_grid(tdip,ωex,gridsize,) return K0 #============================================================================== #============================================================================== # THREE-SPIN ELEMENTARY DIPOLAR KERNEL #============================================================================== def _echomodulation_threespin(tdips,ωrs,rs,θ1,φ1,weights,complex): #============================================================================== "Spin echo modulation due to dipolar coupling(s)" # Orientation of the first interspin vector relative to the magnetic field cosθ1 = np.cos(θ1) sinθ1 = np.sin(θ1) cosφ1 = np.cos(φ1) # Law of cosines r1,r2,r3 = rs Δθ12 = np.arccos((r1**2 + r2**2 - r3**2)/(2*r1*r2)) Δθ13 = np.arccos((r1**2 + r3**2 - r2**2)/(2*r1*r3)) sinΔθ12, cosΔθ12 = np.sin(Δθ12), np.cos(Δθ12) sinΔθ13, cosΔθ13 = np.sin(Δθ13), np.cos(Δθ13) # Compute orientations of the other two interspin vectors relative to the magnetic field cosθ2 = sinΔθ12*cosφ1*sinθ1 + cosΔθ12*cosθ1 cosθ3 = sinΔθ13*cosφ1*sinθ1 + cosΔθ13*cosθ1 # Precompute partial broadcasting for efficiency ωdip1_tdip1,ωdip2_tdip2,ωdip3_tdip3 = [ωdip_q*tdip_q for ωdip_q,tdip_q in zip(ωrs,tdips)] # Differentiate between complex and real valued cases for a speedup if complex: echomod = ne.evaluate('exp(-1j*ωdip1_tdip1*(1 - 3*cosθ1**2) )* \ exp(-1j*ωdip2_tdip2*(1 - 3*cosθ2**2) )* \ exp(-1j*ωdip3_tdip3*(1 - 3*cosθ3**2) )') else: echomod = ne.evaluate('cos(ωdip1_tdip1*(1 - 3*cosθ1**2) )* \ cos(ωdip2_tdip2*(1 - 3*cosθ2**2) )* \ cos(ωdip3_tdip3*(1 - 3*cosθ3**2) )') # Orientation weighting echomod = echomod*weights return echomod #============================================================================== def elementarykernel_threespin(tdips,rs,method,ωex,gridsize,g,,complex): #============================================================================== "Calculates the elementary three-spin dipolar interaction kernel" # Work with vectors rs = np.atleast_1d(*rs) # Dipolar frequencies ωrs = [(μ0/2)*μB**2*g[0]*g[1]/h*1e21/(r_q**3) for r_q in rs] # rad μs^-1 # Orientation selection orientationselection = is not None if orientationselection: # Ensure zero-derivatives at [0,π/2] θ = np.linspace(0,π/2,50) # rad Pθ_ = make_interp_spline(θ, (θ),bc_type="clamped") # Ensure normalization of probability density function (∫P(cosθ)dcosθ=1) Pθnorm,_ = quad(lambda cosθ: Pθ_(np.arccos(cosθ)),0,1,limit=1000) = lambda θ: Pθ_(θ)/Pθnorm def elementarykernel_threespin_grid(tsdip,gridsize,): #------------------------------------------------------------------------ """Calculate kernel using grid-based powder integration (converges very slowly with gridsize)""" # Orientational grid φ,θ,weights = sophegrid(octants=4,maxphi=2*np.pi,size=int(np.floor(1/2*(np.sqrt(2*gridsize - 1) +1 )))) D = len(tsdip[0].shape) dims = np.arange(D + 2) # Expand dimensions of all variables on a multi-dimensional grid tsdip_ = [np.expand_dims(tdip, axis=tuple(np.delete(dims, range(D)))) for tdip in tsdip] ωr_ = [np.expand_dims(ωr_q, axis=tuple(np.delete(dims, D))) for ωr_q in ωrs] rs_ = [np.expand_dims(r_q, axis=tuple(np.delete(dims, D))) for r_q in rs] θ_ = np.expand_dims(θ, axis=tuple(np.delete(dims, D + 1))) φ_ = np.expand_dims(φ, axis=tuple(np.delete(dims, D + 1))) weights_ = np.expand_dims(weights, axis=tuple(np.delete(dims, D + 1))) # Integrate over the grid of echo modulations if orientationselection: # With orientation distribution Pθ K0 = np.dot(_echomodulation_threespin(tsdip_,ωr_,rs_,θ_,φ_,weights_,complex),(θ)) else: # Without orientation selection K0 = np.sum(_echomodulation_threespin(tsdip_,ωr_,rs_,θ_,φ_,weights_,complex),axis=-1) return K0 #------------------------------------------------------------------------ if method=='grid': K0 = elementarykernel_threespin_grid(tdips,gridsize,) return K0 #==============================================================================