# selregparam.py - Regularization parameter selection# -----------------------------------------------------# This file is a part of DeerLab. License is MIT (see LICENSE.md).# Copyright(c) 2019-2023: Luis Fabregas, Stefan Stoll and other contributors.importnumpyasnpimportscipy.optimizeasoptimportmathasmimportdeerlabasdl
[docs]defselregparam(y,A,solver,method='aic',algorithm='auto',noiselvl=None,searchrange=[1e-8,1e2],regop=None,weights=None,full_output=False):r""" Selection of optimal regularization parameter based on a selection criterion. This function is used to compute the optimal regularization parameter in a linear least squares problem. The regularization parameter can be determined using different methods, which are specified in the ``method`` parameter. The function accepts multiple datasets and corresponding model matrices, which can be globally evaluated. The optimization of the regularization parameter can be performed using the ``brent`` algorithm, which is the default, or the slower ``grid`` search algorithm. The function returns the optimal regularization parameter, and if ``full_output`` is ``True``, it also returns the regularization parameter candidates, as well as the values of the selection functional, the residual, and penalty norms all evaluated at the different regularization parameter candidates. Parameters ---------- y : array_like or list of array_like Dataset, multiple datasets can be globally evaluated by passing a list of datasets. A : 2D-array_like or list of 2D-array_like Model (design) matrix, if a list of datasets is specified, a corresponding list of matrices must be passed as well. solver : callable Linear least-squares solver. Must be a callable function with signature ``solver(AtA,Aty)``. method : string Method for the selection of the optimal regularization parameter. * ``'lr'`` - L-curve minimum-radius method (LR) * ``'lc'`` - L-curve maximum-curvature method (LC) * ``'cv'`` - Cross validation (CV) * ``'gcv'`` - Generalized Cross Validation (GCV) * ``'rgcv'`` - Robust Generalized Cross Validation (rGCV) * ``'srgcv'`` - Strong Robust Generalized Cross Validation (srGCV) * ``'aic'`` - Akaike information criterion (AIC) * ``'bic'`` - Bayesian information criterion (BIC) * ``'aicc'`` - Corrected Akaike information criterion (AICC) * ``'rm'`` - Residual method (RM) * ``'ee'`` - Extrapolated Error (EE) * ``'ncp'`` - Normalized Cumulative Periodogram (NCP) * ``'gml'`` - Generalized Maximum Likelihood (GML) * ``'mcl'`` - Mallows' C_L (MCL) If ``'lr'`` or ``'lc'`` is specified, the search algorithm is automatically set to ``'grid'``. weights : array_like, optional Array of weighting coefficients for the individual datasets in global fitting. If not specified all datasets are weighted inversely proportional to their noise levels. algorithm : string, optional Search algorithm: * ``'auto'`` - Automatically, selects algrothium based on the searchrange. If the searchrange has two elements its set to ``'brent'`` otherwise to ``'grid'``. * ``'grid'`` - Grid-search, slow. * ``'brent'`` - Brent-algorithm, fast. The default is ``'auto'``. searchrange : list, optional Either the search range for the optimization of the regularization parameter with the ``'brent'`` algorithm. Or if more than two values are specified, then it is interpreted as candidates for the ``'grid'`` algorithm. If not specified the default search range defaults to ``[1e-8,1e2]`` and the ``'brent'`` algorithm. regop : 2D array_like, optional Regularization operator matrix, the default is the second-order differential operator. full_output : boolean, optional If enabled the function will return additional output arguments in a tuple, the default is False. nonnegativity : boolean, optional Enforces the non-negativity constraint on computed distance distributions, by default enabled. noiselvl : float scalar, optional Estimate of the noise standard deviation, if not specified it is estimated automatically. Used for the MCL selection method. Returns ------- alphaopt : scalar Optimal regularization parameter. alphas : ndarray Regularization parameter values candidates evaluated during the search. Returned if full_output is True. functional : ndarray Values of the selection functional specified by (method) evaluated during the search. Returned if full_output is True. residuals : ndarray Values of the residual norms evaluated during the search. Returned if full_output is True. penalties : ndarray Values of the penalty norms evaluated during the search. Returned if full_output is True. """#========================================================= # If multiple datasets are passed, concatenate the datasets and kernelsy,A,weights,_,__,noiselvl=dl.utils.parse_multidatasets(y,A,weights,noiselvl)ifalgorithm=='auto'andlen(searchrange)==2:algorithm='brent'elifalgorithm=='auto'andlen(searchrange)>2:algorithm='grid'elifalgorithm=='auto'andlen(searchrange)<2:raiseValueError("`searchrange` must have at least two elements if `algorithm` is set to `'auto'")# The L-curve criteria require a grid-evaluationifmethod=='lr'ormethod=='lc':algorithm='grid'ifregopisNone:L=dl.regoperator(np.arange(np.shape(A)[1]),2)else:L=regop# Create function handleevalalpha=lambdaalpha:_evalalpha(alpha,y,A,L,solver,method,noiselvl,weights)# Evaluate functional over search range, using specified search methodifalgorithm=='brent':# Search boundariesiflen(searchrange)!=2:raiseValueError("Search range must have two elements for the 'brent' algorithm.")lga_min=m.log10(searchrange[0])lga_max=m.log10(searchrange[1])# Create containers for non-local variablesfunctional,residuals,penalties,alphas_evaled=(np.array(0)for_inrange(4))defregister_ouputs(optout):#========================nonlocalfunctional,residuals,penalties,alphas_evaled# Append the evaluated outpus at a iterationfunctional=np.append(functional,optout[0])residuals=np.append(residuals,optout[1])penalties=np.append(penalties,optout[2])alphas_evaled=np.append(alphas_evaled,optout[3])# Return the last element, current evaluationreturnfunctional[-1]#========================# Optimize alpha via Brent's method (implemented in scipy.optimize.fminbound)lga_opt=opt.fminbound(lambdalga:register_ouputs(evalalpha(10**lga)),lga_min,lga_max,xtol=0.01)alphaOpt=10**lga_optelifalgorithm=='grid':# Get range of potential alpha values candidatesiflen(searchrange)==2:alphaCandidates=10**np.linspace(np.log10(searchrange[0]),np.log10(searchrange[1]),60)else:alphaCandidates=np.atleast_1d(searchrange)# Evaluate the full grid of alpha-candidates functional,residuals,penalties,alphas_evaled=tuple(zip(*[evalalpha(alpha)foralphainalphaCandidates]))# If an L-curve method is requested evaluate it now with the full grid:# L-curve minimum-radius method (LR)ifmethod=='lr':Eta=np.log(np.asarray(penalties)+1e-20)Rho=np.log(np.asarray(residuals)+1e-20)dd=lambdax:(x-np.min(x))/(np.max(x)-np.min(x))functional=dd(Rho)**2+dd(Eta)**2# L-curve maximum-curvature method (LC)elifmethod=='lc':d1Residual=np.gradient(np.log(np.asarray(residuals)+1e-20))d2Residual=np.gradient(d1Residual)d1Penalty=np.gradient(np.log(np.asarray(penalties)+1e-20))d2Penalty=np.gradient(d1Penalty)functional=(d1Residual*d2Penalty-d2Residual*d1Penalty)/(d1Residual**2+d1Penalty**2)**(3/2)functional=-functional# Maximize instead of minimize # Find minimum of the selection functional alphaOpt=alphaCandidates[np.argmin(functional)]functional=np.array(functional)residuals=np.array(residuals)penalties=np.array(penalties)alphas_evaled=np.array(alphas_evaled)else:raiseKeyError("Search method not found. Must be either 'brent' or 'grid'.")iffull_output:returnalphaOpt,alphas_evaled,functional,residuals,penaltieselse:returnalphaOpt
#=========================================================#=========================================================def_evalalpha(alpha,y,A,L,solver,selmethod,noiselvl,weights):"Evaluation of the selection functional at a given regularization parameter value"# Prepare LSQ componentsAtAreg,Aty=dl.solvers._lsqcomponents(y,A,L,alpha,weights)wA=weights[:,np.newaxis]*A# Solve linear LSQ problemP=solver(AtAreg,Aty)# Moore-PeNose pseudoinversepA=np.linalg.inv(AtAreg)@wA.T# Influence matrixH=wA@pA# Residual termresiduals=weights*(A@P-y)Residual=np.linalg.norm(residuals)# Regularization penalty termPenalty=np.linalg.norm(L@P)#-----------------------------------------------------------------------# Selection methods for optimal regularization parameter#-----------------------------------------------------------------------functional=0N=len(y)# Cross validation (CV)ifselmethod=='cv':f_=sum(abs(residuals/(np.ones(N)-np.diag(H)))**2)# Generalized Cross Validation (GCV)elifselmethod=='gcv':f_=Residual**2/((1-np.trace(H)/N)**2)# Robust Generalized Cross Validation (rGCV)elifselmethod=='rgcv':tuning=0.9f_=Residual**2/((1-np.trace(H)/N)**2)*(tuning+(1-tuning)*np.trace(H**2)/N)# Strong Robust Generalized Cross Validation (srGCV)elifselmethod=='srgcv':tuning=0.8f_=Residual**2/((1-np.trace(H)/N)**2)*(tuning+(1-tuning)*np.trace(pA.T@pA)/N)# Akaike information criterion (AIC)elifselmethod=='aic':crit=2f_=N*np.log(Residual**2/N)+crit*np.trace(H)# Bayesian information criterion (BIC)elifselmethod=='bic':crit=np.log(N)f_=N*np.log(Residual**2/N)+crit*np.trace(H)# Corrected Akaike information criterion (AICC)elifselmethod=='aicc':crit=2*N/(N-np.trace(H)-1)f_=N*np.log(Residual**2/N)+crit*np.trace(H)# Residual method (RM)elifselmethod=='rm':scale=A.T@(np.eye(np.shape(H)[0],np.shape(H)[1])-H)f_=Residual**2/np.sqrt(np.trace(scale.T@scale))# Extrapolated Error (EE) elifselmethod=='ee':f_=Residual**2/np.linalg.norm(A.T@(residuals))# Normalized Cumulative Periodogram (NCP)elifselmethod=='ncp':resPeriodogram=abs(np.fft.fft(residuals))**2wnoisePeriodogram=np.zeros(len(resPeriodogram))respowSpectrum=np.zeros(len(resPeriodogram))forjinrange(len(resPeriodogram)-1):respowSpectrum[j]=np.linalg.norm(resPeriodogram[1:j+1],1)/np.linalg.norm(resPeriodogram[1:-1],1)wnoisePeriodogram[j]=j/(len(resPeriodogram)-1)f_=np.linalg.norm(respowSpectrum-wnoisePeriodogram)# Generalized Maximum Likelihood (GML)elifselmethod=='gml':Treshold=1e-9eigs,_=np.linalg.eig(np.eye(np.shape(H)[0],np.shape(H)[1])-H)eigs[eigs<Treshold]=0nzeigs=np.real(eigs[eigs!=0])f_=y.T@(-residuals)/np.prod(nzeigs)**(1/len(nzeigs))# Mallows' C_L (MCL)elifselmethod=='mcl':f_=Residual**2+2*noiselvl**2*np.trace(H)-2*N*noiselvl**2elifselmethod=='lr'orselmethod=='lc':f_=0else:raiseValueError(f'Selection method \'{selmethod}\' is not known.')functional=functional+f_returnfunctional,Residual,Penalty,alpha#=========================================================